当我深入 Lux Tech Academy 的第二周学习时,我们被介绍了 Python 作为一种初学者语言。以下概述了 Python 作为数据分析工具的介绍。我看过很多数据分析师的视频,大多数都推荐使用Python进行数据分析,为什么? Python 是一种流行的数据分析编程语言,因为它提供了多功能性、灵活性、庞大的库和可视化功能来处理大型数据集。它还适合数据分析,因为它与 BI 工具和数据库完美融合。
Python 是数据分析的首选,因为:
以下是Python在数据分析中的一些应用
Pip install pandas
然后运行:
import pandas as pd
从那里,将数据集加载到 pandas 数据框中。
探索性数据分析 (EDA)
Python 使用 Matplotlib、Seaborn 和 Pandas 等库帮助进行数据探索和可视化。使用 Python 进行编码有助于使用描述性统计、数据透视表等了解数据分布和关系。
机器学习
Python 提供了有助于机器学习的库,例如 Scikit-Learn 和 Tensor Flow。
数据分析师在日常生活中如何使用Python?
导入数据
各种 Python 库(例如 NumPy、Pandas、BeautifulSoup)有助于从各种来源导入数据,例如:Csv 文件和 Excel 电子表格、SQL 数据库、Web API 以及抓取 HTML/XML 页面和云存储。要使用的库的选择取决于数据的类型和结构。
Python 中的 EDA
在现实世界中,数据通常包含错误,例如缺失值,有时可能不准确,因此需要进行一些清理。 Python 中的探索性数据分析通过以下方式帮助数据清理:识别异常、处理缺失数据、检查和修复数据类型、将原始数据转换为有用且可靠的数据集以供分析。
转换数据以获取见解
清理数据后,Python 可以进行各种转换,例如数据透视表、连接数据集以及更改数据类型和格式。
使用 Python 进行描述性分析
SciPy 库具有描述性和推理性统计功能,而 Matplotlib 和 Seaborn 则有助于数据可视化。
Python 是一门有趣的语言,我可以证明它对初学者很友好。请随时在评论部分留下任何问题/评论。
以上是Python 作为数据分析工具简介的详细内容。更多信息请关注PHP中文网其他相关文章!