Salut la communauté DEV.to !
Ceci fait partie de ma série sur les structures de données et les algorithmes. Dans cet article, nous implémenterons une liste chaînée unique, puis dans les prochains articles de cette série, j'implémenterai également d'autres types de listes chaînées en utilisant Go.
Pour implémenter une liste à chaînage unique, nous avons besoin de structures, d'un nœud et d'une liste à chaînage unique elle-même. Mais avant de commencer à coder, voici comment j'aime organiser mon code :
project ├── singly_linked_list │ ├── node.go │ └── list.go └── main.go
Nœud
Un nœud ne contient que des données et un pointeur vers le nœud suivant dans sa forme la plus simple. Voici donc la structure que nous allons utiliser comme nœud (dans le fichier node.go) :
type SinglyNode struct { data interface{} next *SinglyNode }
Nous utilisons interface{} comme type de données pour les données dans la structure afin que nous puissions stocker toutes les données que nous voulons à l'intérieur du nœud.
Ensuite, nous devrions définir quelques méthodes pour utiliser la structure de nœud que nous venons de créer.
func NewSinglyNode(data interface{}) *SinglyNode { return &SinglyNode{data: data} }
Si vous êtes habitué aux langages orientés objet, vous savez probablement ce qu'est un constructeur. Étant donné que Go n'est pas un langage orienté objet, il n'y a pas de classes mais, selon certaines conventions du monde Go, nous créons généralement une fonction préfixée par le mot New. Mais gardez à l’esprit que dans les langages POO, new est un mot-clé spécial qui signifie créer un objet. Ici, le Nouveau n'est qu'un préfixe de nom et rien de plus.
La fonction NewSinglyNode ne reçoit qu'un seul argument appelé data de type interface{} et renvoie un pointeur de SinglyNode.
Ensuite, nous définissons quelques getters et setters pour le nœud :
func (n *SinglyNode) SetData(data interface{}) { n.data = data } func (n *SinglyNode) SetNext(next *SinglyNode) { n.next = next } func (n *SinglyNode) GetData() interface{} { return n.data } func (n *SinglyNode) GetNext() (*SinglyNode, error) { if n.next == nil { return nil, errors.New("no next node") } return n.next, nil }
Les SetData, Setnext et GetData sont assez explicites. Le GetNext renvoie deux valeurs, un pointeur vers le prochain SinglyNode et une erreur s'il n'y a pas de nœud suivant.
Voici une fonction supplémentaire que j'aime toujours ajouter pour pouvoir toujours savoir comment est la représentation sous forme de chaîne de ma structure :
func (n *SinglyNode) ToString() string { return n.data.(string) }
Liste
Maintenant que nous en avons terminé avec notre nœud, nous devons implémenter la liste elle-même. Une liste à chaînage unique contient le premier nœud comme tête et, selon ma préférence, deux autres données appelées last contiennent le dernier nœud et une propriété country qui contient le nombre de nœuds ajoutés à la liste.
Voici donc les premières lignes du fichier list.go :
type SinglyLinkedList struct { head *SinglyNode last *SinglyNode count int }
Et évidemment, une fonction de type constructeur pour créer facilement une SinglyLinkedList :
func NewSinglyLinkedList() *SinglyLinkedList { return &SinglyLinkedList{} }
La fonction la plus importante dans une liste chaînée est celle qui ajoute un nœud. Voici mon implémentation d'une telle fonction :
func (l *SinglyLinkedList) AttachNode(node *SinglyNode) { if l.head == nil { l.head = node } else { l.last.SetNext(node) } l.last = node l.count++ }
La fonction fonctionne comme ci-dessous :
- Vérifiez si l'en-tête de la liste chaînée est vide, si c'est le cas, définissez le nœud reçu comme en-tête de la liste.
- Si la tête n'est pas vide, elle définit le nœud reçu comme propriété suivante du dernier nœud.
- Indépendamment de ce qui s'est passé auparavant, le nœud actuel doit être le dernier nœud afin que la prochaine fois qu'un nœud sera ajouté, il puisse être défini comme le suivant pour le dernier nœud de notre liste.
- Augmentez le nombre de un.
Voici une fonction qui reçoit des données, crée un nœud et le transmet à la fonction AttachNode :
func (l *SinglyLinkedList) Add(data interface{}) { l.AttachNode(NewSinglyNode(data)) }
Bien que cette fonction puisse sembler redondante, elle facilitera l'ajout de nœuds à la liste sans en créer un manuellement à chaque fois.
Une fonction pour obtenir également la propriété count :
func (l *SinglyLinkedList) Count() int { return l.count }
La dernière fonction nécessaire est une fonction qui doit renvoyer le nœud suivant dans la liste chaînée :
func (l *SinglyLinkedList) GetNext() (*SinglyNode, error) { if l.head == nil { return nil, errors.New("list is empty") } return l.head, nil }
Je préfère nommer cette fonction comme la fonction GetNext définie pour les nœuds. Ceci est fait pour qu'il y ait plus de cohérence. Lors du premier accès à une liste chaînée, le type est une liste chaînée, il n'y a donc pas d'accès aux fonctions définies pour les nœuds. Définir une fonction du même nom vous permettra d'utiliser GetNext autant que vous le souhaitez pour parcourir votre liste.
Une fonction supplémentaire que j'ai toujours tendance à ajouter est une fonction permettant de récupérer un nœud par l'index :
func (l *SinglyLinkedList) GetByIndex(index int) (*SinglyNode, error) { if l.head == nil { return nil, errors.New("list is empty") } if index+1 > l.count { return nil, errors.New("index out of range") } node, _ := l.GetNext() for i := 0; i <p>Cette fonction fait comme ci-dessous :</p>
- Vérifiez si la tête est vide pour renvoyer une erreur
- Vérifiez si l'index 1 est supérieur au nombre de la liste pour renvoyer une erreur. Nous vérifions l'index 1 et non l'index puisque nous considérons les indices commençant à 0 tout comme les tableaux.
- Attribuez l.GetNext() à une variable nommée node (en ignorant l'erreur avec _) puis bouclez pour un de moins que l'index fourni car nous avons déjà le premier stocké dans la variable node, attribuant le nœud suivant du courant nœud comme nœud à nouveau.
- Renvoyer le nœud parcouru sans erreur.
Essai
Maintenant que nous avons notre liste chaînée et nos définitions de nœuds, nous pouvons la tester dans notre fichier main.go comme ci-dessous :
func main() { list := singly_linked_list.NewSinglyLinkedList() list.Add("One") list.Add("Two") list.Add("Three") firstNode, err := list.GetNext() if err != nil { panic(err) } secondNode, err := firstNode.GetNext() if err != nil { panic(err) } thirdNode, err := secondNode.GetNext() if err != nil { panic(err) } println(firstNode.ToString()) // One println(secondNode.ToString()) // Two println(thirdNode.ToString()) // Three }
Ou en utilisant la fonction GetByIndex :
func main() { list := singly_linked_list.NewSinglyLinkedList() list.Add("One") list.Add("Two") list.Add("Three") node, err := list.GetByIndex(2) if err != nil { panic(err) } fmt.Println(node.ToString()) // Three }
Au fait ! Consultez mon e-book gratuit Node.js Essentials ici :

NodeJS 要点 |免费电子书
Adnan Babakan(他/他) ・ 2020 年 9 月 11 日
如果您有任何问题或建议,请随时联系我。
以上是Go 中的单链表实现的详细内容。更多信息请关注PHP中文网其他相关文章!

在Go中,使用互斥锁和锁是确保线程安全的关键。1)使用sync.Mutex进行互斥访问,2)使用sync.RWMutex处理读写操作,3)使用原子操作进行性能优化。掌握这些工具及其使用技巧对于编写高效、可靠的并发程序至关重要。

如何优化并发Go代码的性能?使用Go的内置工具如gotest、gobench和pprof进行基准测试和性能分析。1)使用testing包编写基准测试,评估并发函数的执行速度。2)通过pprof工具进行性能分析,识别程序中的瓶颈。3)调整垃圾收集设置以减少其对性能的影响。4)优化通道操作和限制goroutine数量以提高效率。通过持续的基准测试和性能分析,可以有效提升并发Go代码的性能。

避免并发Go程序中错误处理的常见陷阱的方法包括:1.确保错误传播,2.处理超时,3.聚合错误,4.使用上下文管理,5.错误包装,6.日志记录,7.测试。这些策略有助于有效处理并发环境中的错误。

IndimitInterfaceImplementationingingoembodiesducktybybyallowingTypestoSatoSatiSatiSatiSatiSatiSatsatSatiSatplicesWithouTexpliclIctDeclaration.1)itpromotesflemotesflexibility andmodularitybybyfocusingion.2)挑战挑战InclocteSincludeUpdatingMethodSignateSignatiSantTrackingImplections.3)工具li

在Go编程中,有效管理错误的方法包括:1)使用错误值而非异常,2)采用错误包装技术,3)定义自定义错误类型,4)复用错误值以提高性能,5)谨慎使用panic和recover,6)确保错误消息清晰且一致,7)记录错误处理策略,8)将错误视为一等公民,9)使用错误通道处理异步错误。这些做法和模式有助于编写更健壮、可维护和高效的代码。

在Go中实现并发可以通过使用goroutines和channels来实现。1)使用goroutines来并行执行任务,如示例中同时享受音乐和观察朋友。2)通过channels在goroutines之间安全传递数据,如生产者和消费者模式。3)避免过度使用goroutines和死锁,合理设计系统以优化并发程序。

Gooffersmultipleapproachesforbuildingconcurrentdatastructures,includingmutexes,channels,andatomicoperations.1)Mutexesprovidesimplethreadsafetybutcancauseperformancebottlenecks.2)Channelsofferscalabilitybutmayblockiffullorempty.3)Atomicoperationsareef

go'serrorhandlingisexplicit,治疗eRROSASRETRATERTHANEXCEPTIONS,与pythonandjava.1)go'sapphifeensuresererrawaresserrorawarenessbutcanleadtoverbosecode.2)pythonandjavauseexeexceptionseforforforforforcleanerCodebutmaymobisserrors.3)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

WebStorm Mac版
好用的JavaScript开发工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

Dreamweaver CS6
视觉化网页开发工具

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中