L'une des plus grandes difficultés pour ceux qui commencent à étudier l'apprentissage automatique est peut-être de travailler, de traiter les données, de faire de petites inférences, puis d'assembler votre modèle.
Dans cet article, je vais illustrer comment analyser un ensemble de données pour mieux construire un modèle de Machine Learning en passant par :
- Brève explication de ce qu'est l'apprentissage automatique
- Types et différences d'apprentissage
- Comprendre et extraire les informations importantes de l'ensemble de données
- Traiter les données d'un ensemble de données
- Différences entre les algorithmes d'un modèle
- Construction d'un modèle de régression linéaire
Mais commençons par le début, pour pouvoir contextualiser, qu'est-ce que le Machine Learning (ML) ?
Le ML est l'une des différentes branches de l'intelligence artificielle (IA), au même titre que les réseaux de neurones ou la robotique, et autres. Le type d'apprentissage automatique dépend de la façon dont les données sont structurées, elles peuvent donc être divisées en différents types, créant ainsi un modèle. Un modèle ML est créé à l'aide d'algorithmes qui traitent les données d'entrée et apprennent à prédire ou à classer les résultats.
L'importance d'un ensemble de données
Pour créer un modèle ML, nous avons besoin d'un ensemble de données, dans l'ensemble de données il doit y avoir nos fonctionnalités d'entrée, qui sont essentiellement l'intégralité de notre ensemble de données à l'exception de la colonne cible en fonction de notre type d'apprentissage, s'il s'agit d'un apprentissage supervisé, l'ensemble de données doit contenir les cibles, ou les étiquettes, ou les réponses correctes, car ces informations seront utilisées pour entraîner et tester le modèle.
Quelques types d'apprentissage et la structure de l'ensemble de données correspondant :
- Apprentissage supervisé : Ici, le modèle apprend à travers un ensemble de données étiquetées, avec des sorties correctes déjà fournies, le modèle vise donc à apprendre à associer entrées et sorties pour pouvoir faire ses prédictions correctement pour les nouvelles données.
- Apprentissage non supervisé : La formation du modèle est effectuée avec des données non étiquetées, il n'y a pas de sortie correcte associée à l'entrée, l'objectif du modèle est donc d'identifier des modèles et des regroupements dans les données.
- Apprentissage par renforcement : En cela, le modèle apprend de l'interaction avec l'environnement. Il prendra des mesures dans l'environnement et recevra une récompense pour les actions correctes ou recevra une pénalité pour les mauvaises actions, dans le but de maximiser pleinement les récompenses à long terme en maximisant le comportement qui a conduit à l'exécution des actions correctes.
Par conséquent, l'ensemble de données définit essentiellement l'ensemble du comportement et du processus d'apprentissage du modèle généré par la machine.
Pour continuer avec les exemples, j'utiliserai un ensemble de données avec des étiquettes, illustrant un modèle avec Supervised Learning, où l'objectif sera de définir la valeur mensuelle de l'assurance-vie pour un public spécifique.
Commençons par charger notre ensemble de données et voyons ses premières lignes.
import pandas as pd data = pd.read_csv('../dataset_seguro_vida.csv') data.head()
Détaillons un peu plus nos données, nous pouvons voir son format, et découvrir le nombre de lignes et de colonnes dans l'ensemble de données.
data.shape
Nous avons ici une structure de données de 500 lignes et 9 colonnes.
Voyons maintenant de quels types de données nous disposons et s'il nous manque des données.
data.info()
Nous avons ici 3 colonnes numériques, dont 2 int (nombres entiers) et 1 float (nombres avec décimales), et les 6 autres sont des objets. On peut donc passer un peu à l'étape suivante du traitement des données.
Travailler l'ensemble de données
Une bonne étape vers l'amélioration de notre ensemble de données est de comprendre que certains types de données sont traités et même compris plus facilement par le modèle que d'autres. Par exemple, les données de type objet sont plus lourdes et même limitées à travailler, il est donc préférable de les transformer en catégorie, car cela nous permet d'avoir plusieurs gains depuis les performances jusqu'à l'efficacité dans l'utilisation de la mémoire (dans Dans le fin, on peut même améliorer cela en faisant une autre transformation, mais le moment venu j'expliquerai mieux).
object_columns = data.select_dtypes(include='object').columns for col in object_columns: data[col] = data[col].astype('category') data.dtypes
Como o nosso objetivo é conseguir estipular o valor da mensalidade de um seguro de vida, vamos dar uma olhada melhor nas nossas variáveis numéricas usando a transposição.
data.describe().T
Podemos aqui ver alguns detalhes e valores dos nossos inputs numéricos, como a média aritmética, o valor mínimo e máximo. Através desses dados podemos fazer a separação desses valores em grupos baseados em algum input de categoria, por gênero, se fuma ou não, entre outros, como demonstração vamos fazer a separação por sexo, para visualizar a media aritmética das colunas divididas por sexo.
value_based_on_sex = data.groupby("Sexo").mean("PrecoSeguro") value_based_on_sex
Como podemos ver que no nosso dataset os homens acabam pagando um preço maior de seguro (lembrando que esse dataset é fictício).
Podemos ter uma melhor visualização dos dados através do seaborn, é uma biblioteca construída com base no matplotlib usada especificamente para plotar gráficos estatísticos.
import seaborn as sns sns.set_style("whitegrid") sns.pairplot( data[["Idade", "Salario", "PrecoSeguro", "Sexo"]], hue = "Sexo", height = 3, palette = "Set1")
Aqui podemos visualizar a distribuição desses valores através dos gráficos ficando mais claro a separação do conjunto, com base no grupo que escolhemos, como um teste você pode tentar fazer um agrupamento diferente e ver como os gráficos vão ficar.
Vamos criar uma matriz de correlação, sendo essa uma outra forma de visualizar a relação das variáveis numéricas do dataset, com o auxilio visual de um heatmap.
numeric_data = data.select_dtypes(include=['float64', 'int64']) corr_matrix = numeric_data.corr() sns.heatmap(corr_matrix, annot= True)
Essa matriz transposta nos mostra quais variáveis numéricas influenciam mais no nosso modelo, é um pouco intuitivo quando você olha para a imagem, podemos observar que a idade é a que mais vai interferir no preço do seguro.
Basicamente essa matriz funciona assim:
Os valores variam entre -1 e 1:
1: Correlação perfeita positiva - Quando uma variável aumenta, a outra também aumenta proporcionalmente.
0: Nenhuma correlação - Não há relação linear entre as variáveis.
-1: Correlação perfeita negativa - Quando uma variável aumenta, a outra diminui proporcionalmente.
Lembra da transformada que fizemos de object para category nos dados, agora vem a outra melhoria comentada, com os dados que viraram category faremos mais uma transformada, dessa vez a ideia é transformar essa variáveis categóricas em representações numéricas, isso nos permitirá ter um ganho incrível com o desempenho do modelo já que ele entende muito melhor essas variáveis numéricas.
Conseguimos fazer isso facilmente com a lib do pandas, o que ele faz é criar nova colunas binarias para valores distintos, o pandas é uma biblioteca voltada principalmente para analise de dados e estrutura de dados, então ela já possui diversas funcionalidades que nos auxiliam nos processo de tratamento do dataset.
data = pd.get_dummies(data)
Pronto agora temos nossas novas colunas para as categorias.
Decidindo o Algoritmo
Para a construção do melhor modelo, devemos saber qual o algoritmo ideal para o propósito da ML, na tabela seguinte vou deixar um resumo simplificado de como analisar seu problema e fazer a melhor escolha.
Olhando a tabela podemos ver que o problema que temos que resolver é o de regressão. Aqui vai mais uma dica, sempre comesse simples e vá incrementando seu e fazendo os ajustes necessários até os valores de previsibilidade do modelo ser satisfatório.
Para o nosso exemplo vamos montar um modelo de Regressão Linear, já que temos uma linearidade entre os nossos inputs e temos como target uma variável numérica.
Sabemos que a nossa variável target é a coluna PrecoSeguro , as outras são nossos inputs. Os inputs em estatísticas são chamadas de variável independente e o target de variável dependente, pelos nomes fica claro que a ideia é que o nosso target é uma variável que depende dos nosso inputs, se os inputs variam nosso target tem que vai variar também.
Vamos definir nosso y com o target
y = data["PrecoSeguro"] E para x vamos remover a coluna target e inserir todas as outras X = data.drop("PrecoSeguro", axis = 1)
Antes de montarmos o modelo, nosso dataset precisa ser dividido uma parte para teste e outra para o treino, para fazer isso vamos usar do scikit-learn o método train_test_split.
from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test=train_test_split( X,y, train_size = 0.80, random_state = 1)
Aqui dividimos o nosso dataset em 80% para treino e 20% para testes. Agora podemos montar o nosso modelo.
from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train,y_train)
Modelo montado agora podemos avaliar seu desempenho
lr.score(X_test, y_test). lr.score(X_train, y_train)
Aqui podemos analisar a o coeficiente de determinação do nosso modelo para testes e para o treinamento.
Podemos usar um outro método para poder descobrir o desvio padrão do nosso modelo, e entender a estabilidade e a confiabilidade do desempenho do modelo para a amostra
<p>from sklearn.metrics import mean_squared_error<br> import math</p> <p>y_pred = lr.predict(X_test)<br> math.sqrt(mean_squared_error(y_test, y_pred))</p>
Considerações
O valor perfeito do coeficiente de determinação é 1, quanto mais próximo desse valor, teoricamente melhor seria o nosso modelo, mas um ponto de atenção é basicamente impossível você conseguir um modelo perfeito, até mesmo algo acima de 0.95 é de se desconfiar.
Se você tiver trabalhando com dados reais e conseguir um valor desse é bom analisar o seu modelo, testar outras abordagens e até mesmo revisar seu dataset, pois seu modelo pode estar sofrendo um overfitting e por isso apresenta esse resultado quase que perfeitos.
Aqui como montamos um dataset com valores irreais e sem nenhum embasamento é normal termos esses valores quase que perfeitos.
Deixarei aqui um link para o github do código e dataset usados nesse post
- GitHub
以上是构建机器学习模型时的数据集的详细内容。更多信息请关注PHP中文网其他相关文章!

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

Dreamweaver Mac版
视觉化网页开发工具

Atom编辑器mac版下载
最流行的的开源编辑器

禅工作室 13.0.1
功能强大的PHP集成开发环境