搜索
首页后端开发Python教程使用 LlamaIndex 构建简单的 RAG 代理

Building a simple RAG agent with LlamaIndex

LlamaIndex 是一个使用法学硕士构建情境增强生成式 AI 应用程序的框架。

什么是上下文增强?

上下文增强是指向 LLM 模型提供附加相关信息或上下文的技术,从而提高其对给定查询的理解和响应。这种增强通常涉及检索、集成外部数据源(例如文档、嵌入)或将其附加到模型的输入。目标是通过为模型提供必要的上下文来帮助模型提供更好、更准确和细致的答案,从而使模型更加明智。检索增强生成(RAG)是上下文增强最流行的示例。

什么是代理?

代理是由法学硕士提供支持的自动推理和决策引擎,它们使用工具来执行研究、数据提取、网络搜索和更多任务。它们可用于简单的用例,例如基于数据回答问题,以便能够决定并采取行动来完成任务。

在这篇文章中,我们将使用 LlamaIndex 构建一个简单的 RAG 代理。

构建 RAG 代理

安装依赖项

我们将使用 Python 使用 LlamaIndex 构建简单的 RAG 代理。让我们首先安装所需的依赖项,如下所示:

pip install llama-index python-dotenv

设置LLM并加载文档

我们将使用 OpenAI 的 gpt-4o-mini 作为法学硕士。您需要将 API 密钥放入环境变量文件中。您可以在此处阅读有关使用 LLamaIndex 设置本地法学硕士的更多信息。

from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, Settings
from llama_index.llms.openai import OpenAI
from dotenv import load_dotenv

# Load environment variables (e.g., OPENAI_API_KEY)
load_dotenv()

# Configure OpenAI model
Settings.llm = OpenAI(model="gpt-4o-mini")

# Load documents from the local directory
documents = SimpleDirectoryReader("./data").load_data()

# Create an index from documents for querying
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()

  • 首先,我们使用 OpenAI 配置 LLM 模型并指定 gpt-4o-mini 模型。您可以根据您的需要切换到其他可用的模型/LLM。
  • 然后,我们使用 SimpleDirectoryReader 从本地 ./data 目录加载文档。该阅读器扫描目录、读取文件并构造数据以供查询。
  • 接下来,我们从加载的文档创建向量存储索引,使我们能够在查询执行期间执行高效的基于向量的检索。

为代理创建自定义函数

现在,让我们定义代理可以用来执行任务的一些基本函数。

def multiply(a: float, b: float) -> float:
    """Multiply two numbers and returns the product"""
    return a * b

def add(a: float, b: float) -> float:
    """Add two numbers and returns the sum"""
    return a + b

为代理创建工具

接下来,我们将根据之前定义的函数和查询引擎创建工具,代理将使用这些工具来执行任务。这些工具充当代理在处理不同类型的查询时可以利用的实用程序。

from llama_index.core.tools import FunctionTool, QueryEngineTool

# Wrap functions as tools
add_tool = FunctionTool.from_defaults(fn=add)
multiply_tool = FunctionTool.from_defaults(fn=multiply)

# Create a query engine tool for document retrieval
space_facts_tool = QueryEngineTool.from_defaults(
    query_engine,
    name="space_facts_tool",
    description="A RAG engine with information about fun space facts."
)

  • FunctionTool 包装了加法和乘法函数并将它们公开为工具。代理现在可以访问这些工具来执行计算。
  • QueryEngineTool 包装了 query_engine,以允许代理从向量存储中查询和检索信息。我们将其命名为 space_facts_tool 并附有说明,表明该工具可以检索有关空间事实的信息。您可以摄取任何内容并根据摄取的数据自定义工具。

创建代理

我们现在将使用 ReActAgent 创建代理。代理将负责决定何时使用这些工具以及如何响应查询。

from llama_index.core.agent import ReActAgent

# Create the agent with the tools
agent = ReActAgent.from_tools(
    [multiply_tool, add_tool, space_facts_tool], verbose=True
)

该代理使用 ReAct 框架,该框架允许模型通过按逻辑顺序利用给定工具来推理并采取行动。代理使用我们创建的工具进行初始化,并且 verbose=True 标志将输出有关代理如何推理和执行任务的详细信息。

运行代理

最后,让我们在交互式循环中运行代理,它会处理用户查询,直到我们退出。

while True:
    query = input("Query: ")

    if query == "/bye":
        exit()

    response = agent.chat(query)
    print(response)
    print("-" * 10)

RAG 代理如何工作?

  • 当您提出与您摄取的文档相关的问题时,space_facts_tool(即矢量存储工具)会使用 query_engine 检索相关信息。
  • 当您要求计算时,代理会使用 add_tool 或 multiply_tool 来执行这些任务。
  • 代理根据用户查询即时决定使用哪个工具并提供输出。

以上是使用 LlamaIndex 构建简单的 RAG 代理的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python:游戏,Guis等Python:游戏,Guis等Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python vs.C:申请和用例Python vs.C:申请和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时的Python计划:一种现实的方法2小时的Python计划:一种现实的方法Apr 11, 2025 am 12:04 AM

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python:探索其主要应用程序Python:探索其主要应用程序Apr 10, 2025 am 09:41 AM

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

您可以在2小时内学到多少python?您可以在2小时内学到多少python?Apr 09, 2025 pm 04:33 PM

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础?如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础?Apr 02, 2025 am 07:18 AM

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到?如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

Python 3.6加载Pickle文件报错"__builtin__"模块未找到怎么办?Python 3.6加载Pickle文件报错"__builtin__"模块未找到怎么办?Apr 02, 2025 am 07:12 AM

Python3.6环境下加载Pickle文件报错:ModuleNotFoundError:Nomodulenamed...

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),