考虑一个排序数组,例如:
[1, 2, 3, 4, 5, 6]
现在,如果这个数组在某个枢轴处旋转,比如在索引 3 处,它将变成:
[4, 5, 6, 1, 2, 3]
请注意,数组仍然是排序的,但它被分为两部分。我们的目标是有效地在此类数组中搜索目标值。
要在旋转排序数组中搜索,我们需要:
class Solution { public static void main(String[] args) { int[] arr = {4, 5, 6, 1, 2, 3}; // Example of rotated sorted array int target = 5; // Searching for the target int result = search(arr, target); // Displaying the result System.out.println("Index of target: " + result); } // Main search function to find the target in a rotated sorted array public static int search(int[] nums, int target) { // Step 1: Find the pivot int pivot = searchPivot(nums); // Step 2: If no pivot, perform regular binary search if (pivot == -1) { return binarySearch(nums, target, 0, nums.length - 1); } // Step 3: If the target is at the pivot, return the pivot index if (nums[pivot] == target) { return pivot; } // Step 4: Decide which half of the array to search if (target >= nums[0]) { return binarySearch(nums, target, 0, pivot - 1); // Search left side } else { return binarySearch(nums, target, pivot + 1, nums.length - 1); // Search right side } } // Binary search helper function static int binarySearch(int[] arr, int target, int start, int end) { while (start <= end) { int mid = start + (end - start) / 2; if (arr[mid] == target) { return mid; // Target found } else if (target < arr[mid]) { end = mid - 1; // Search left half } else { start = mid + 1; // Search right half } } return -1; // Target not found } // Function to find the pivot index in a rotated sorted array static int searchPivot(int[] arr) { int start = 0; int end = arr.length - 1; while (start <= end) { int mid = start + (end - start) / 2; // Check if mid is the pivot point if (mid < end && arr[mid] > arr[mid + 1]) { return mid; } // Check if the pivot is before the mid if (mid > start && arr[mid] < arr[mid - 1]) { return mid - 1; } // Decide whether to move left or right if (arr[mid] <= arr[start]) { end = mid - 1; } else { start = mid + 1; } } return -1; // No pivot found (array is not rotated) } }
搜索():
binarySearch():
searchPivot():
对于像 [4, 5, 6, 1, 2, 3] 这样的数组:
此方法确保我们高效搜索,实现 O(log n) 的时间复杂度,类似于标准的二分搜索。
旋转排序数组是一个常见的面试问题,也是加深您对二分搜索理解的有用挑战。通过找到枢轴并相应地调整我们的二分搜索,我们可以在对数时间中高效地搜索数组。
如果您觉得这篇文章有帮助,请随时在 LinkedIn 上与我联系或在评论中分享您的想法!快乐编码!
以上是用 Java 构建旋转排序数组搜索:了解枢轴搜索和二分搜索的详细内容。更多信息请关注PHP中文网其他相关文章!