搜索
首页后端开发Python教程Polars 与 Pandas Python 数据帧的新时代?

Polars vs. Pandas A New Era of Dataframes in Python ?

北极熊与熊猫:有什么区别?

如果您一直关注 Python 的最新发展,您可能听说过 Polars,一个用于处理数据的新库。虽然 pandas 长期以来一直是首选库,但 Polars 正在掀起波澜,尤其是在处理大型数据集方面。那么,Polars 有什么大不了的呢?它和熊猫有什么不同?让我们来分解一下。


什么是极地?

Polars 是一个免费的开源库,内置于 Rust(一种快速的现代编程语言)。它旨在帮助 Python 开发人员以更快、更高效的方式处理数据。将其视为 pandas 的替代方案,当您处理 pandas 可能难以处理的非常大的数据集时,它会表现出色。


为什么要创建极地?

Pandas 已经存在很多年了,很多人仍然喜欢使用它。但随着数据变得越来越大、越来越复杂,pandas 开始表现出一些弱点。 Polars 的创建者 Ritchie Vink 注意到了这些问题,并决定创造一些更快、更高效的东西。甚至 pandas 的创建者 Wes McKinney 在一篇题为 “我讨厌 pandas 的 10 件事” 的博客文章中也承认 pandas 需要一些改进,尤其是在处理大型数据集时。

这就是 Polars 的用武之地,它的设计目标是速度极快且内存高效,这是 pandas 在处理大数据时面临的两个难题。


主要区别:北极熊与熊猫

1. 速度

Polars 非常快。事实上,一些基准测试表明,在执行过滤或分组数据等常见操作时,Polars 的速度比 pandas 快5-10 倍。当您处理大型数据集时,这种速度差异尤其明显。

2. 内存使用情况

Polars 在记忆方面要高效得多。它使用的内存比 pandas 少大约 5 到 10 倍,这意味着您可以处理更大的数据集而不会遇到内存问题。

3. 惰性执行

Polars 使用称为延迟执行的东西,这意味着它不会在您编写每个操作时立即运行它。相反,它会等到您编写了一系列操作,然后立即运行它们。这有助于它优化并更快地运行。另一方面,Pandas 会立即运行每个操作,这对于大型任务来说可能会更慢。

4. 多线程

Polars 可以同时使用多个 CPU 核心来处理数据,这使得处理大数据集的速度更快。 Pandas 大多是单线程的,这意味着它一次只能使用一个 CPU 核心,这会减慢速度,尤其是在处理大型数据集时。


为什么 Polar 如此快?

Polar 速度很快有几个原因:

  • 它是用 Rust 构建的,这是一种以其速度和安全性而闻名的编程语言,使其非常高效。
  • 它使用 Apache Arrow,这是一种在内存中存储数据的特殊方式,可以更轻松、更快速地跨不同编程语言使用。

Rust 和 Apache Arrow 的组合使 Polars 在速度和内存使用方面比 pandas 更具优势。


Pandas 的优点和局限性

虽然 Polars 非常适合大数据,但 pandas 仍然占有一席之地。 Pandas 非常适合中小型数据集,并且已经存在很长时间了,它拥有大量的功能和庞大的社区。因此,如果您不处理庞大的数据集,pandas 可能仍然是您的最佳选择。

但是,随着数据集变大,pandas 往往会使用更多内存并且速度变慢,这使得 Polars 在这些情况下成为更好的选择。


什么时候应该使用 Polar?

如果出现以下情况,您应该考虑使用 Polars:

  • 您正在处理大型数据集(数百万或数十亿行)。
  • 您需要速度和性能才能快速完成任务。
  • 您有内存限制并且需要节省正在使用的内存量。

结论

北极熊和熊猫都有各自的优点。如果您正在处理中小型数据集,pandas 仍然是一个很棒的工具。但如果您正在处理大型数据集并且需要更快、更高效的内存效率,Polars 绝对值得尝试。得益于 Rust 和 Apache Arrow,其性能得到提升,使其成为数据密集型任务的绝佳选择。

随着 Python 的不断发展,Polars 可能会成为处理大数据的新的首选工具。

编码愉快? ?

以上是Polars 与 Pandas Python 数据帧的新时代?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python vs. C:了解关键差异Python vs. C:了解关键差异Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python vs.C:您的项目选择哪种语言?Python vs.C:您的项目选择哪种语言?Apr 21, 2025 am 12:17 AM

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

达到python目标:每天2小时的力量达到python目标:每天2小时的力量Apr 20, 2025 am 12:21 AM

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

最大化2小时:有效的Python学习策略最大化2小时:有效的Python学习策略Apr 20, 2025 am 12:20 AM

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

在Python和C之间进行选择:适合您的语言在Python和C之间进行选择:适合您的语言Apr 20, 2025 am 12:20 AM

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python与C:编程语言的比较分析Python与C:编程语言的比较分析Apr 20, 2025 am 12:14 AM

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天2小时:Python学习的潜力每天2小时:Python学习的潜力Apr 20, 2025 am 12:14 AM

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。