搜索
首页后端开发Python教程A Guide to Unsupervised Image Segmentation using Normalized Cuts (NCut) in Python

A Guide to Unsupervised Image Segmentation using Normalized Cuts (NCut) in Python

Introduction

Image segmentation plays a vital role in understanding and analyzing visual data, and Normalized Cuts (NCut) is a widely used method for graph-based segmentation. In this article, we will explore how to apply NCut for unsupervised image segmentation in Python using a dataset from Microsoft Research, with a focus on improving segmentation quality using superpixels.
Dataset Overview
The dataset used for this task can be downloaded from the following link: MSRC Object Category Image Database. This dataset contains original images as well as their semantic segmentation into nine object classes (indicated by image files ending with "_GT"). These images are grouped into thematic subsets, where the first number in the file name refers to a class subset. This dataset is perfect for experimenting with segmentation tasks.

Problem Statement

We perform image segmentation on an image in the dataset using the NCut algorithm. Segmentation at the pixel level is computationally expensive and often noisy. To overcome this, we use SLIC (Simple Linear Iterative Clustering) to generate superpixels, which groups similar pixels and reduces the problem size. To evaluate the accuracy of the segmentation different metrics (e.g., Intersection over Union, SSIM, Rand Index) can be used.

Implementation

1. Install Required Libraries
We use skimage for image processing, numpy for numerical computations, and matplotlib for visualization.

pip install numpy matplotlib
pip install scikit-image==0.24.0
**2. Load and Preprocess the Dataset**

After downloading and extracting the dataset, load the images and ground truth segmentation:

wget http://download.microsoft.com/download/A/1/1/A116CD80-5B79-407E-B5CE-3D5C6ED8B0D5/msrc_objcategimagedatabase_v1.zip -O msrc_objcategimagedatabase_v1.zip
unzip msrc_objcategimagedatabase_v1.zip
rm msrc_objcategimagedatabase_v1.zip

Now we are ready to start coding.

from skimage import io, segmentation, color, measure
from skimage import graph
import numpy as np
import matplotlib.pyplot as plt

# Load the image and its ground truth
image = io.imread('/content/MSRC_ObjCategImageDatabase_v1/1_16_s.bmp')
ground_truth = io.imread('/content/MSRC_ObjCategImageDatabase_v1/1_16_s_GT.bmp')

# show images side by side
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].imshow(image)
ax[0].set_title('Image')
ax[1].imshow(ground_truth)
ax[1].set_title('Ground Truth')
plt.show()

3. Generate Superpixels using SLIC and create a Region Adjacency Graph

We use the SLIC algorithm to compute superpixels before applying NCut. Using the generated superpixels, we construct a Region Adjacency Graph (RAG) based on mean color similarity:

from skimage.util import img_as_ubyte, img_as_float, img_as_uint, img_as_float64

compactness=30 
n_segments=100 
labels = segmentation.slic(image, compactness=compactness, n_segments=n_segments, enforce_connectivity=True)
image_with_boundaries = segmentation.mark_boundaries(image, labels, color=(0, 0, 0))
image_with_boundaries = img_as_ubyte(image_with_boundaries)
pixel_labels = color.label2rgb(labels, image_with_boundaries, kind='avg', bg_label=0

compactness controls the balance between the color similarity and spatial proximity of pixels when forming superpixels. It determines how much emphasis is placed on keeping the superpixels compact (closer in spatial terms) versus ensuring that they are more homogeneously grouped by color.
Higher Values: A higher compactness value causes the algorithm to prioritize creating superpixels that are spatially tight and uniform in size, with less attention to color similarity. This might result in superpixels that are less sensitive to edges or color gradients.
Lower Values: A lower compactness value allows the superpixels to vary more in spatial size in order to respect the color differences more accurately. This typically results in superpixels that follow the boundaries of objects in the image more closely.

n_segments controls the number of superpixels (or segments) that the SLIC algorithm attempts to generate in the image. Essentially, it sets the resolution of the segmentation.
Higher Values: A higher n_segments value creates more superpixels, which means each superpixel will be smaller and the segmentation will be more fine-grained. This can be useful when the image has complex textures or small objects.
Lower Values: A lower n_segments value produces fewer, larger superpixels. This is useful when you want a coarse segmentation of the image, grouping larger areas into single superpixels.

4. Apply Normalized Cuts (NCut) and Visualize the Result

# using the labels found with the superpixeled image
# compute the Region Adjacency Graph using mean colors
g = graph.rag_mean_color(image, labels, mode='similarity')

# perform Normalized Graph cut on the Region Adjacency Graph
labels2 = graph.cut_normalized(labels, g)
segmented_image = color.label2rgb(labels2, image, kind='avg')
f, axarr = plt.subplots(nrows=1, ncols=4, figsize=(25, 20))

axarr[0].imshow(image)
axarr[0].set_title("Original")

#plot boundaries
axarr[1].imshow(image_with_boundaries)
axarr[1].set_title("Superpixels Boundaries")

#plot labels
axarr[2].imshow(pixel_labels)
axarr[2].set_title('Superpixel Labels')

#compute segmentation
axarr[3].imshow(segmented_image)
axarr[3].set_title('Segmented image (normalized cut)')

5. Evaluation Metrics
The key challenge in unsupervised segmentation is that NCut doesn't know the exact number of classes in the image. The number of segments found by NCut may exceed the actual number of ground truth regions. As a result, we need robust metrics to assess segmentation quality.

Intersection over Union (IoU) is a widely used metric for evaluating segmentation tasks, particularly in computer vision. It measures the overlap between the predicted segmented regions and the ground truth regions. Specifically, IoU calculates the ratio of the area of overlap between the predicted segmentation and the ground truth to the area of their union.

Structural Similarity Index (SSIM) is a metric used to assess the perceived quality of an image by comparing two images in terms of luminance, contrast, and structure.

To apply these metrics we need that the prediction and the ground truth image have the same labels. To compute the labels we compute a mask on the ground and on the prediction assign an ID to each color found on the image
Segmentation using NCut however may find more regions than ground truth, this will lower the accuracy.

def compute_mask(image):
  color_dict = {}

  # Get the shape of the image
  height,width,_ = image.shape

  # Create an empty array for labels
  labels = np.zeros((height,width),dtype=int)
  id=0
  # Loop over each pixel
  for i in range(height):
      for j in range(width):
          # Get the color of the pixel
          color = tuple(image[i,j])
          # Check if it is in the dictionary
          if color in color_dict:
              # Assign the label from the dictionary
              labels[i,j] = color_dict[color]
          else:
              color_dict[color]=id
              labels[i,j] = id
              id+=1

  return(labels)
def show_img(prediction, groundtruth):
  f, axarr = plt.subplots(nrows=1, ncols=2, figsize=(15, 10))

  axarr[0].imshow(groundtruth)
  axarr[0].set_title("groundtruth")
  axarr[1].imshow(prediction)
  axarr[1].set_title(f"prediction")
prediction_mask = compute_mask(segmented_image)
groundtruth_mask = compute_mask(ground_truth)

#usign the original image as baseline to convert from labels to color
prediction_img = color.label2rgb(prediction_mask, image, kind='avg', bg_label=0)
groundtruth_img = color.label2rgb(groundtruth_mask, image, kind='avg', bg_label=0)

show_img(prediction_img, groundtruth_img)

Now we compute the accuracy scores

from sklearn.metrics import jaccard_score
from skimage.metrics import structural_similarity as ssim

ssim_score = ssim(prediction_img, groundtruth_img, channel_axis=2)
print(f"SSIM SCORE: {ssim_score}")

jac = jaccard_score(y_true=np.asarray(groundtruth_mask).flatten(),
                        y_pred=np.asarray(prediction_mask).flatten(),
                        average = None)

# compute mean IoU score across all classes
mean_iou = np.mean(jac)
print(f"Mean IoU: {mean_iou}")

Conclusion

Normalized Cuts is a powerful method for unsupervised image segmentation, but it comes with challenges such as over-segmentation and tuning parameters. By incorporating superpixels and evaluating the performance using appropriate metrics, NCut can effectively segment complex images. The IoU and Rand Index metrics provide meaningful insights into the quality of segmentation, though further refinement is needed to handle multi-class scenarios effectively.
Finally, a complete example is available in my notebook here.

以上是A Guide to Unsupervised Image Segmentation using Normalized Cuts (NCut) in Python的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python中的合并列表:选择正确的方法Python中的合并列表:选择正确的方法May 14, 2025 am 12:11 AM

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

如何在Python 3中加入两个列表?如何在Python 3中加入两个列表?May 14, 2025 am 12:09 AM

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

Python串联列表字符串Python串联列表字符串May 14, 2025 am 12:08 AM

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

Python执行,那是什么?Python执行,那是什么?May 14, 2025 am 12:06 AM

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python:关键功能是什么Python:关键功能是什么May 14, 2025 am 12:02 AM

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python:编译器还是解释器?Python:编译器还是解释器?May 13, 2025 am 12:10 AM

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

python用于循环与循环时:何时使用哪个?python用于循环与循环时:何时使用哪个?May 13, 2025 am 12:07 AM

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

Python循环:最常见的错误Python循环:最常见的错误May 13, 2025 am 12:07 AM

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)