#️⃣ Array, Priority Queue, Quick Select
https://leetcode.com/problems/kth-largest-element-in-an-array/description
? Understand Problem
If the array is [8, 6, 12, 9, 3, 4] and k is 2, you need to find the 2nd largest element in this array. First, you will sort the array: [3, 4, 6, 8, 9, 12] The output will be 9 because it is the second-largest element.
✅ Bruteforce
var findKthLargest = function(nums, k) { // Sort the array in ascending order nums.sort((a, b) => a - b); // Return the kth largest element return nums[nums.length - k]; };
Explanation:
- Sorting the Array: The array is sorted in ascending order using the sort method.
- Finding the kth Largest Element: The kth largest element is found by accessing the element at the index nums.length - k.
Time Complexity:
- Sorting: The time complexity of sorting an array is (O(nlog n)), where (n) is the length of the array.
- Accessing the Element: Accessing an element in an array is O(1).
So, the overall time complexity is O(n log n).
Space Complexity:
- In-Place Sorting: The sort method sorts the array in place, so the space complexity is O(1) for the sorting operation.
- Overall: Since we are not using any additional data structures, the overall space complexity is O(1).
✅ Better
var findKthLargest = function(nums, k) { // Create a min-heap using a priority queue let minHeap = new MinPriorityQueue(); // Add the first k elements to the heap for (let i = 0; i < k; i++) { //minHeap.enqueue(nums[i]): Adds the element nums[i] to the min-heap. minHeap.enqueue(nums[i]); } // Iterate through the remaining elements for (let i = k; i < nums.length; i++) { //minHeap.front().element: Retrieves the smallest element in the min-heap without removing it. if (minHeap.front().element < nums[i]) { // minHeap.dequeue(): Removes the smallest element from the min-heap. minHeap.dequeue(); // Add the current element minHeap.enqueue(nums[i]); } } // The root of the heap is the kth largest element return minHeap.front().element; };
Explanation:
- Initial Array: [2, 1, 6, 3, 5, 4]
- k = 3: We need to find the 3rd largest element.
Step 1: Add the first k elements to the min-heap
- Heap after adding 2: [2]
- Heap after adding 1: [1, 2]
- Heap after adding 6: [1, 2, 6]
Step 2: Iterate through the remaining elements
-
Current element = 3
- Heap before comparison: [1, 2, 6]
- Smallest element in heap (minHeap.front().element): 1
- Comparison: 3 > 1
- Action: Remove 1 and add 3
- Heap after update: [2, 6, 3]
-
Current element = 5
- Heap before comparison: [2, 6, 3]
- Smallest element in heap (minHeap.front().element): 2
- Comparison: 5 > 2
- Action: Remove 2 and add 5
- Heap after update: [3, 6, 5]
-
Current element = 4
- Heap before comparison: [3, 6, 5]
- Smallest element in heap (minHeap.front().element): 3
- Comparison: 4 > 3
- Action: Remove 3 and add 4
- Heap after update: [4, 6, 5]
- Heap: [4, 6, 5]
- 3rd largest element: 4 (the root of the heap)
- Heap Operations: Inserting and removing elements from the heap takes O(log k) time.
- Overall: Since we perform these operations for each of the n elements in the array, the overall time complexity is O(n log k).
- Heap Storage: The space complexity is O(k) because the heap stores at most k elements.
Final Step: Return the root of the heap
Time Complexity:
Space Complexity:
✅ Best
Note: Even though Leetcode restricts quick select, you should remember this approach because it passes most test cases
//Quick Select Algo function quickSelect(list, left, right, k) if left = right return list[left] Select a pivotIndex between left and right pivotIndex := partition(list, left, right, pivotIndex) if k = pivotIndex return list[k] else if k < pivotIndex right := pivotIndex - 1 else left := pivotIndex + 1
var findKthLargest = function(nums, k) { // Call the quickSelect function to find the kth largest element return quickSelect(nums, 0, nums.length - 1, nums.length - k); }; function quickSelect(nums, low, high, index) { // If the low and high pointers are the same, return the element at low if (low === high) return nums[low]; // Partition the array and get the pivot index let pivotIndex = partition(nums, low, high); // If the pivot index is the target index, return the element at pivot index if (pivotIndex === index) { return nums[pivotIndex]; } else if (pivotIndex > index) { // If the pivot index is greater than the target index, search in the left partition return quickSelect(nums, low, pivotIndex - 1, index); } else { // If the pivot index is less than the target index, search in the right partition return quickSelect(nums, pivotIndex + 1, high, index); } } function partition(nums, low, high) { // Choose the pivot element let pivot = nums[high]; let pointer = low; // Rearrange the elements based on the pivot for (let i = low; i < high; i++) { if (nums[i] <= pivot) { [nums[i], nums[pointer]] = [nums[pointer], nums[i]]; pointer++; } } // Place the pivot element in its correct position [nums[pointer], nums[high]] = [nums[high], nums[pointer]]; return pointer; }
Explanation:
- Initial Array: [3, 2, 1, 5, 6, 4]
- k = 2: We need to find the 2nd largest element.
Step 1: Partition the array
- Pivot element = 4
- Array after partitioning: [3, 2, 1, 4, 6, 5]
- Pivot index = 3
Step 2: Recursive Selection
- Target index = 4 (since we need the 2nd largest element, which is the 4th index in 0-based indexing)
- Pivot index (3) < Target index (4): Search in the right partition [6, 5]
Step 3: Partition the right partition
- Pivot element = 5
- Array after partitioning: [3, 2, 1, 4, 5, 6]
- Pivot index = 4
Final Step: Return the element at the target index
- Element at index 4: 5
Time Complexity:
- Average Case: The average time complexity of Quickselect is O(n).
- Worst Case: The worst-case time complexity is O(n^2), but this is rare with good pivot selection.
Space Complexity:
- In-Place: The space complexity is O(1) because the algorithm works in place.
以上是Kth Largest Element in an Array的详细内容。更多信息请关注PHP中文网其他相关文章!

JavaScript在Web开发中的主要用途包括客户端交互、表单验证和异步通信。1)通过DOM操作实现动态内容更新和用户交互;2)在用户提交数据前进行客户端验证,提高用户体验;3)通过AJAX技术实现与服务器的无刷新通信。

理解JavaScript引擎内部工作原理对开发者重要,因为它能帮助编写更高效的代码并理解性能瓶颈和优化策略。1)引擎的工作流程包括解析、编译和执行三个阶段;2)执行过程中,引擎会进行动态优化,如内联缓存和隐藏类;3)最佳实践包括避免全局变量、优化循环、使用const和let,以及避免过度使用闭包。

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

从C/C 转向JavaScript需要适应动态类型、垃圾回收和异步编程等特点。1)C/C 是静态类型语言,需手动管理内存,而JavaScript是动态类型,垃圾回收自动处理。2)C/C 需编译成机器码,JavaScript则为解释型语言。3)JavaScript引入闭包、原型链和Promise等概念,增强了灵活性和异步编程能力。

不同JavaScript引擎在解析和执行JavaScript代码时,效果会有所不同,因为每个引擎的实现原理和优化策略各有差异。1.词法分析:将源码转换为词法单元。2.语法分析:生成抽象语法树。3.优化和编译:通过JIT编译器生成机器码。4.执行:运行机器码。V8引擎通过即时编译和隐藏类优化,SpiderMonkey使用类型推断系统,导致在相同代码上的性能表现不同。

JavaScript在现实世界中的应用包括服务器端编程、移动应用开发和物联网控制:1.通过Node.js实现服务器端编程,适用于高并发请求处理。2.通过ReactNative进行移动应用开发,支持跨平台部署。3.通过Johnny-Five库用于物联网设备控制,适用于硬件交互。

我使用您的日常技术工具构建了功能性的多租户SaaS应用程序(一个Edtech应用程序),您可以做同样的事情。 首先,什么是多租户SaaS应用程序? 多租户SaaS应用程序可让您从唱歌中为多个客户提供服务


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

Dreamweaver Mac版
视觉化网页开发工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。