搜索
首页web前端js教程DSA 和 Big O 表示法简介

Intro to DSA & Big O Notation

掌握 DSA 的注意事项:

Master DSA“有资格”获得向 S/w Ers 提供的高薪。
DSA 是软件工程的主要部分。
在编写代码之前,请确保您了解大局,然后深入了解细节。
这一切都是为了直观地理解概念,然后通过任何 l/g 将这些概念翻译成代码,因为 DSA 与语言无关。
每个即将到来的概念都以某种方式与之前的概念相关联。因此,除非您通过练习彻底掌握了这个概念,否则不要跳话题或继续前进。
当我们直观地学习概念时,我们会对材料有更深入的理解,从而帮助我们更长时间地保留知识。
如果您遵循这些建议,您将不会有任何损失。

Linear DS:
Arrays
LinkedList(LL) & Doubly LL (DLL)
Stack
Queue & Circular Queue

Non-linear DS:
Trees
Graphs

大 O 表示法

理解这种表示法对于算法的性能比较至关重要。
这是一种比较算法效率的数学方法。

时间复杂度

代码运行得越快,它就会越低
V. 大多数采访的印象。

空间复杂度

由于存储成本低,与时间复杂度相比很少被考虑。
需要理解,因为面试官也可能会问你这个。

三个希腊字母:

  1. 欧米茄
  2. 西塔
  3. Omicron 即 Big-O [最常见]

算法案例

  1. 最佳情况[使用 Omega 表示]
  2. 平均案例[使用 Theta 表示]
  3. 最坏情况[使用 Omicron 表示]

从技术上讲,平均情况 Big-O 不存在最佳情况。它们分别用 omega 和 theta 表示。
我们总是在衡量最坏的情况。

## O(n): Efficient Code
Proportional
Its simplified by dropping the constant values.
An operation happens 'n' times, where n is passed as an argument as shown below.
Always going to be a straight line having slope 1, as no of operations is proportional to n.
X axis - value of n.
Y axis - no of operations 

// O(n)
function printItems(n){
  for(let i=1; i





<pre class="brush:php;toolbar:false">## O(n^2):
Nested loops.
No of items which are output in this case are n*n for a 'n' input.
function printItems(n){
  for(let i=0; i<n i console.log for j="0;" printitems>





<pre class="brush:php;toolbar:false">## O(n^3):
No of items which are output in this case are n*n*n for a 'n' input.
// O(n*n*n)
function printItems(n){
  for(let i=0; i<n i console.log iteration for j="0;" mid k="0;" inner printitems comparison of time complexity: o> O(n*n)


## Drop non-dominants:
function xxx(){
  // O(n*n)
  Nested for loop

  // O(n)
  Single for loop
}
Complexity for the below code will O(n*n) + O(n) 
By dropping non-dominants, it will become O(n*n) 
As O(n) will be negligible as the n value grows. O(n*n) is dominant term, O(n) is non-dominnat term here.
</n>
## O(1):
Referred as Constant time i.e No of operations do not change as 'n' changes.
Single operation irrespective of no of operands.
MOST EFFICIENT. Nothing is more efficient than this. 
Its a flat line overlapping x-axis on graph.


// O(1)
function printItems(n){
  return n+n+n+n;
}
printItems(3);


## Comparison of Time Complexity:
O(1) > O(n) > O(n*n)
## O(log n)
Divide and conquer technique.
Partitioning into halves until goal is achieved.

log(base2) of 8 = 3 i.e we are basically saying 2 to what power is 8. That power denotes the no of operations to get to the result.

Also, to put it in another way we can say how many times we need to divide 8 into halves(this makes base 2 for logarithmic operation) to get to the single resulting target item which is 3.

Ex. Amazing application is say for a 1,000,000,000 array size, how many times we need to cut to get to the target item.
log(base 2) 1,000,000,000 = 31 times
i.e 2^31 will make us reach the target item.

Hence, if we do the search in linear fashion then we need to scan for billion items in the array.
But if we use divide & conquer approach, we can find it in just 31 steps.
This is the immense power of O(log n)

## Comparison of Time Complexity:
O(1) > O(log n) > O(n) > O(n*n)
Best is O(1) or O(log n)
Acceptable is O(n)
O(n log n) : 
Used in some sorting Algos.
Most efficient sorting algo we can make unless we are sorting only nums.
Tricky Interview Ques: Different Terms for Inputs.
function printItems(a,b){
  // O(a)
  for(let i=0; i<a i console.log o for j="0;" printitems we can have both variables equal to suppose a is and b then will be very different. hence it eventually what call it. similarly if these were nested loops become>





<pre class="brush:php;toolbar:false">## Arrays
No reindexing is required in arrays for push-pop operations. Hence both are O(1).
Adding-Removing from end in array is O(1)

Reindexing is required in arrays for shift-unshift operations. Hence, both are O(n) operations, where n is no of items in the array.
Adding-Removing from front in array is O(n)

Inserting anywhere in array except start and end positions:
myArr.splice(indexForOperation, itemsToBeRemoved, ContentTobeInsterted)
Remaining array after the items has to be reindexed.
Hence, it will be O(n) and not O(0.5 n) as Big-O always meassures worst case, and not avg case. 0.5 is constant, hence its droppped.
Same is applicable for removing an item from an array also as the items after it has to be reindexed.


Finding an item in an array:
if its by value: O(n)
if its by index: O(1)

Select a DS based on the use-case.
For index based, array will be a great choice.
If a lot of insertion-deletion is perform in the begin, then use some other DS as reindexing will make it slow.

n=100 的时间复杂度比较:

O(1) = 1
O(log 100) = 7
O(100) = 100
O(n^2) = 10,000

n=1000 的时间复杂度比较:

O(1) = 1
O(log 1000) = ~10
O(1000) = 1000
O(1000*1000) = 1,000,000

我们主要关注这4个:
大 O(n*n):嵌套循环
大 O(n):比例
Big O(log n):分而治之
大 O(1):常数

O(n!) 通常发生在我们故意编写糟糕的代码时。
O(n*n) 是可怕的算法
O(n log n) 是可以接受的,并被某些排序算法使用
O(n) :可接受
O(log n), O(1) :最佳

所有 DS 的空间复杂度几乎相同,即 O(n)。
使用排序算法,空间复杂度从 O(n) 到 O(log n) 或 O(1) 不等

时间复杂度根据算法而变化

除数字(如字符串)之外的排序的最佳时间复杂度是 O(n log n),即快速排序、合并排序、时间排序、堆排序。

应用所学知识的最佳方法是尽可能多地编写代码。

根据每个 DS 的优缺点来选择在哪个问题陈述中选择哪个 DS。

更多信息请参考:bigocheatsheet.com

以上是DSA 和 Big O 表示法简介的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
JavaScript数据类型:浏览器和nodejs之间是否有区别?JavaScript数据类型:浏览器和nodejs之间是否有区别?May 14, 2025 am 12:15 AM

JavaScript核心数据类型在浏览器和Node.js中一致,但处理方式和额外类型有所不同。1)全局对象在浏览器中为window,在Node.js中为global。2)Node.js独有Buffer对象,用于处理二进制数据。3)性能和时间处理在两者间也有差异,需根据环境调整代码。

JavaScript评论:使用//和 / * * / * / * /JavaScript评论:使用//和 / * * / * / * /May 13, 2025 pm 03:49 PM

JavaScriptusestwotypesofcomments:single-line(//)andmulti-line(//).1)Use//forquicknotesorsingle-lineexplanations.2)Use//forlongerexplanationsorcommentingoutblocksofcode.Commentsshouldexplainthe'why',notthe'what',andbeplacedabovetherelevantcodeforclari

Python vs. JavaScript:开发人员的比较分析Python vs. JavaScript:开发人员的比较分析May 09, 2025 am 12:22 AM

Python和JavaScript的主要区别在于类型系统和应用场景。1.Python使用动态类型,适合科学计算和数据分析。2.JavaScript采用弱类型,广泛用于前端和全栈开发。两者在异步编程和性能优化上各有优势,选择时应根据项目需求决定。

Python vs. JavaScript:选择合适的工具Python vs. JavaScript:选择合适的工具May 08, 2025 am 12:10 AM

选择Python还是JavaScript取决于项目类型:1)数据科学和自动化任务选择Python;2)前端和全栈开发选择JavaScript。Python因其在数据处理和自动化方面的强大库而备受青睐,而JavaScript则因其在网页交互和全栈开发中的优势而不可或缺。

Python和JavaScript:了解每个的优势Python和JavaScript:了解每个的优势May 06, 2025 am 12:15 AM

Python和JavaScript各有优势,选择取决于项目需求和个人偏好。1.Python易学,语法简洁,适用于数据科学和后端开发,但执行速度较慢。2.JavaScript在前端开发中无处不在,异步编程能力强,Node.js使其适用于全栈开发,但语法可能复杂且易出错。

JavaScript的核心:它是在C还是C上构建的?JavaScript的核心:它是在C还是C上构建的?May 05, 2025 am 12:07 AM

javascriptisnotbuiltoncorc; saninterpretedlanguagethatrunsonenginesoftenwritteninc.1)javascriptwasdesignedAsalightweight,解释edganguageforwebbrowsers.2)Enginesevolvedfromsimpleterterterpretpreterterterpretertestojitcompilerers,典型地提示。

JavaScript应用程序:从前端到后端JavaScript应用程序:从前端到后端May 04, 2025 am 12:12 AM

JavaScript可用于前端和后端开发。前端通过DOM操作增强用户体验,后端通过Node.js处理服务器任务。1.前端示例:改变网页文本内容。2.后端示例:创建Node.js服务器。

Python vs. JavaScript:您应该学到哪种语言?Python vs. JavaScript:您应该学到哪种语言?May 03, 2025 am 12:10 AM

选择Python还是JavaScript应基于职业发展、学习曲线和生态系统:1)职业发展:Python适合数据科学和后端开发,JavaScript适合前端和全栈开发。2)学习曲线:Python语法简洁,适合初学者;JavaScript语法灵活。3)生态系统:Python有丰富的科学计算库,JavaScript有强大的前端框架。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中