这个问题在线性时间和空间中看起来很容易解决。这个问题建立在数组的一些基本概念之上。
在编码面试中提出这个问题的公司有 Facebook、亚马逊、苹果、Netflix、谷歌、微软、Adobe 以及许多其他顶级科技公司。
给定一个整数数组 nums,返回一个数组 answer,使得 answer[i] 等于 nums 中除 nums[i] 之外的所有元素的乘积。
nums 的任何前缀或后缀的乘积保证适合32位整数。
您必须编写一个在 O(n) 时间内运行且不使用除法运算的算法。
测试用例#1:
Input: nums = [1,2,3,4] Output: [24,12,8,6]
测试用例#2:
Input: nums = [-1,1,0,-3,3] Output: [0,0,9,0,0]
这个问题在线性时间和空间上看起来更容易解决,但在编写伪代码或实际代码实现时却很棘手。
让我们看看包含 4 个元素的简单数组的预期结果:
input = {1, 2, 3, 4}
因此,每个索引处的值是数组中除该值本身之外的所有其他元素的乘积。下图说明了这一点。
根据上图,我们可以得出一个公式。对于任何给定的索引 i,我们可以使用从 o 到 (i - 1) 的元素的乘积加上从 (i + 1) 到 (N - 1) 的元素的乘积来找到该值。如下图所示:
在写伪代码之前,先提出问题并向面试官提问。
一旦你和面试官讨论了上述问题,就想出各种方法来解决问题。
要采用强力方法,我们必须执行两个 for 循环。当外循环索引与内循环索引值匹配时,我们应该跳过乘积;否则,我们将继续使用该产品。
// brute force static int[] bruteForce(int[] nums) { int N = nums.length; int[] result = new int[N]; for (int i = 0; i < N; i++) { int currentProduct = 1; for (int j = 0; j < N; j++) { if (i == j) { continue; } currentProduct *= nums[j]; } result[i] = currentProduct; } return result; }
大多数开发人员认为的一种方法是运行所有元素的乘积和,将乘积和除以每个数组值,然后返回结果。
// O(n) time and O(1) space p = 1 for i -> 0 to A[i] p * = A[i] for i -> 0 to (N - 1) A[i] = p/A[i] // if A[i] == 0 ? BAM error‼️
// code implementation static int[] productSum(int[] nums) { int product_sum = 1; for(int num: nums) { product_sum *= num; } for(int i = 0; i < nums.length; i++) { nums[i] = product_sum/nums[i]; } return nums; }
如果数组元素之一包含 0 怎么办? ?
除了包含0的索引之外,所有索引的值肯定是无穷大。另外,代码会抛出 java.lang.ArithmeticException。
Exception in thread "main" java.lang.ArithmeticException: / by zero at dev.ggorantala.ds.arrays.ProductOfArrayItself.productSum(ProductOfArrayItself.java:24) at dev.ggorantala.ds.arrays.ProductOfArrayItself.main(ProductOfArrayItself.java:14)
在我的网站上的数组掌握课程中了解有关前缀和后缀和的更多信息 https://ggorantala.dev
前缀和后缀是在为结果编写算法之前计算的。前缀和后缀总和公式如下:
Function usingPrefixSuffix(nums): N = length of nums result = new array of length N prefix_sum = new array of length N suffix_sum = new array of length N // Calculate prefix products prefix_sum[0] = nums[0] For i from 1 to N-1: prefix_sum[i] = prefix_sum[i-1] * nums[i] // Calculate suffix products suffix_sum[N-1] = nums[N-1] For i from N-2 to 0: suffix_sum[i] = suffix_sum[i+1] * nums[i] // Calculate result array For i from 0 to N-1: If i == 0: result[i] = suffix_sum[i+1] Else If i == N-1: result[i] = prefix_sum[i-1] Else: result[i] = prefix_sum[i-1] * suffix_sum[i+1] Return result
// using prefix and suffix arrays private static int[] usingPrefixSuffix(int[] nums) { int[] result = new int[nums.length]; int[] prefix_sum = new int[nums.length]; int[] suffix_sum = new int[nums.length]; // prefix sum calculation prefix_sum[0] = nums[0]; for (int i = 1; i < nums.length; i++) { prefix_sum[i] = prefix_sum[i - 1] * nums[i]; } // suffix sum calculation suffix_sum[nums.length - 1] = nums[nums.length - 1]; for (int i = nums.length - 2; i >= 0; i--) { suffix_sum[i] = suffix_sum[i + 1] * nums[i]; } for (int i = 0; i < nums.length; i++) { if (i == 0) { // when variable `i` is at 0th index result[i] = suffix_sum[i + 1]; } else if (i == nums.length - 1) { // when variable `i` is at last index result[i] = prefix_sum[i - 1]; } else { // for all other indexes result[i] = prefix_sum[i - 1] * suffix_sum[i + 1]; } } return result; }
Each of these steps involves a single pass through the array, resulting in a total time complexity of O(n)+O(n)+O(n) = 3O(n), which is O(n).
For the suffix array calculation, we override the input nums array instead of creating one.
private static int[] usingPrefixSuffixOptimization(int[] nums) { int[] result = new int[nums.length]; int[] prefix_sum = new int[nums.length]; // prefix sum calculation prefix_sum[0] = nums[0]; for (int i = 1; i < nums.length; i++) { prefix_sum[i] = prefix_sum[i - 1] * nums[i]; } // suffix sum calculation, in-place - `nums` array override for (int i = nums.length - 2; i >= 0; i--) { nums[i] = nums[i + 1] * nums[i]; } for (int i = 0; i < nums.length; i++) { if (i == 0) { // when variable `i` is at 0th index result[i] = nums[i + 1]; } else if (i == nums.length - 1) { // when variable `i` is at last index result[i] = prefix_sum[i - 1]; } else { // for all other indexes result[i] = prefix_sum[i - 1] * nums[i + 1]; } } return result; }
Hence, we reduced the space of O(n). Time and space are not reduced, but we did a small optimization here.
This is a rather easy approach when we use the knowledge of prefix and suffix arrays.
For every given index i, we will calculate the product of all the numbers to the left and then multiply it by the product of all the numbers to the right. This will give us the product of all the numbers except the one at the given index i. Let's look at a formal algorithm that describes this idea more clearly.
Function prefixSuffix1(nums): N = length of nums result = new array of length N prefix_sum = new array of length N suffix_sum = new array of length N // Calculate prefix products prefix_sum[0] = 1 For i from 1 to N-1: prefix_sum[i] = prefix_sum[i-1] * nums[i-1] // Calculate suffix products suffix_sum[N-1] = 1 For i from N-2 to 0: suffix_sum[i] = suffix_sum[i+1] * nums[i+1] // Calculate result array For i from 0 to N-1: result[i] = prefix_sum[i] * suffix_sum[i] Return result
private static int[] prefixSuffixProducts(int[] nums) { int[] result = new int[nums.length]; int[] prefix_sum = new int[nums.length]; int[] suffix_sum = new int[nums.length]; prefix_sum[0] = 1; for (int i = 1; i < nums.length; i++) { prefix_sum[i] = prefix_sum[i - 1] * nums[i - 1]; } suffix_sum[nums.length - 1] = 1; for (int i = nums.length - 2; i >= 0; i--) { suffix_sum[i] = suffix_sum[i + 1] * nums[i + 1]; } for (int i = 0; i < nums.length; i++) { result[i] = prefix_sum[i] * suffix_sum[i]; } return result; }
Each of these steps involves a single pass through the array, resulting in a total time complexity of O(n)+O(n)+O(n) = 3O(n), which is O(n).
All three arrays are of length n, so the total space complexity is O(n) + O(n) + O(n) = 3O(n), which is O(n).
The carry forward technique optimizes us to solve the problem with a more efficient space complexity. Instead of using two separate arrays for prefix and suffix products, we can use the result array itself to store intermediate results and use a single pass for each direction.
Here’s how you can implement the solution using the carry-forward technique:
prefix products prefixProduct = 1 For i from 0 to N-1: result[i] = prefixProduct prefixProduct = prefixProduct * nums[i] // Calculate suffix products and finalize result suffixProduct = 1 For i from N-1 to 0: result[i] = result[i] * suffixProduct suffixProduct = suffixProduct * nums[i] Return result
// carry forward technique private static int[] carryForward(int[] nums) { int n = nums.length; int[] result = new int[n]; // Calculate prefix products int prefixProduct = 1; for (int i = 0; i < n; i++) { result[i] = prefixProduct; prefixProduct *= nums[i]; } // Calculate suffix products and finalize the result int suffixProduct = 1; for (int i = n - 1; i >= 0; i--) { result[i] *= suffixProduct; suffixProduct *= nums[i]; } return result; }
This approach uses only a single extra array (result) and two variables (prefixProduct and suffixProduct), achieving efficient space utilization while maintaining O(n) time complexity.
以上是Leetcode:除自身之外的数组的乘积的详细内容。更多信息请关注PHP中文网其他相关文章!