Introduction
The multiprocessing module in Python allows you to create and manage processes, enabling you to take full advantage of multiple processors on a machine. It helps you achieve parallel execution by using separate memory spaces for each process, unlike threading where threads share the same memory space. Here's a list of commonly used classes and methods in the multiprocessing module with brief examples.
1. Process
The Process class is the core of the multiprocessing module, allowing you to create and run new processes.
from multiprocessing import Process def print_numbers(): for i in range(5): print(i) p = Process(target=print_numbers) p.start() # Starts a new process p.join() # Waits for the process to finish
2. start()
Starts the process’s activity.
p = Process(target=print_numbers) p.start() # Runs the target function in a separate process
3. join([timeout])
Blocks the calling process until the process whose join() method is called terminates. Optionally, you can specify a timeout.
p = Process(target=print_numbers) p.start() p.join(2) # Waits up to 2 seconds for the process to finish
4. is_alive()
Returns True if the process is still running.
p = Process(target=print_numbers) p.start() print(p.is_alive()) # True if the process is still running
5. current_process()
Returns the current Process object representing the calling process.
from multiprocessing import current_process def print_current_process(): print(current_process()) p = Process(target=print_current_process) p.start() # Prints the current process info
6. active_children()
Returns a list of all Process objects currently alive.
p1 = Process(target=print_numbers) p2 = Process(target=print_numbers) p1.start() p2.start() print(Process.active_children()) # Lists all active child processes
7. cpu_count()
Returns the number of CPUs available on the machine.
from multiprocessing import cpu_count print(cpu_count()) # Returns the number of CPUs on the machine
8. Pool
A Pool object provides a convenient way to parallelize execution of a function across multiple input values. It manages a pool of worker processes.
from multiprocessing import Pool def square(n): return n * n with Pool(4) as pool: # Pool with 4 worker processes result = pool.map(square, [1, 2, 3, 4, 5]) print(result) # [1, 4, 9, 16, 25]
9. Queue
A Queue is a shared data structure that allows multiple processes to communicate by passing data between them.
from multiprocessing import Process, Queue def put_data(q): q.put([1, 2, 3]) def get_data(q): data = q.get() print(data) q = Queue() p1 = Process(target=put_data, args=(q,)) p2 = Process(target=get_data, args=(q,)) p1.start() p2.start() p1.join() p2.join()
10. Lock
A Lock ensures that only one process can access a shared resource at a time.
from multiprocessing import Process, Lock lock = Lock() def print_numbers(): with lock: for i in range(5): print(i) p1 = Process(target=print_numbers) p2 = Process(target=print_numbers) p1.start() p2.start() p1.join() p2.join()
11. Value and Array
The Value and Array objects allow sharing simple data types and arrays between processes.
from multiprocessing import Process, Value def increment(val): with val.get_lock(): val.value += 1 shared_val = Value('i', 0) processes = [Process(target=increment, args=(shared_val,)) for _ in range(10)] for p in processes: p.start() for p in processes: p.join() print(shared_val.value) # Output will be 10
12. Pipe
A Pipe provides a two-way communication channel between two processes.
from multiprocessing import Process, Pipe def send_message(conn): conn.send("Hello from child") conn.close() parent_conn, child_conn = Pipe() p = Process(target=send_message, args=(child_conn,)) p.start() print(parent_conn.recv()) # Receives data from the child process p.join()
13. Manager
A Manager allows you to create shared objects, such as lists and dictionaries, that multiple processes can modify concurrently.
from multiprocessing import Process, Manager def modify_list(shared_list): shared_list.append("New item") with Manager() as manager: shared_list = manager.list([1, 2, 3]) p = Process(target=modify_list, args=(shared_list,)) p.start() p.join() print(shared_list) # [1, 2, 3, "New item"]
14. Semaphore
A Semaphore allows you to control access to a resource, permitting only a certain number of processes to access it at a time.
from multiprocessing import Process, Semaphore import time sem = Semaphore(2) # Only 2 processes can access the resource def limited_access(): with sem: print("Accessing resource") time.sleep(2) processes = [Process(target=limited_access) for _ in range(5)] for p in processes: p.start() for p in processes: p.join()
Conclusion
The multiprocessing module in Python is designed to take full advantage of multiple processors on a machine. From creating and managing processes using Process, to controlling shared resources with Lock and Semaphore, and facilitating communication through Queue and Pipe, the multiprocessing module is crucial for parallelizing tasks in Python applications.
以上是Python 多处理模块快速指南及示例的详细内容。更多信息请关注PHP中文网其他相关文章!

pythonuseshybridapprace,ComminingCompilationTobyTecoDeAndInterpretation.1)codeiscompiledtoplatform-Indepententbybytecode.2)bytecodeisisterpretedbybythepbybythepythonvirtualmachine,增强效率和通用性。

theKeyDifferencesBetnewpython's“ for”和“ for”和“ loopsare:1)” for“ loopsareIdealForiteringSequenceSquencesSorkNowniterations,而2)”,而“ loopsareBetterforConterContinuingUntilacTientInditionIntionismetismetistismetistwithOutpredefinedInedIterations.un

在Python中,可以通过多种方法连接列表并管理重复元素:1)使用 运算符或extend()方法可以保留所有重复元素;2)转换为集合再转回列表可以去除所有重复元素,但会丢失原有顺序;3)使用循环或列表推导式结合集合可以去除重复元素并保持原有顺序。

fasteStmethodMethodMethodConcatenationInpythondependersonListsize:1)forsmalllists,operatorseffited.2)forlargerlists,list.extend.extend()orlistComprechensionfaster,withextendEffaster,withExtendEffers,withextend()withextend()是extextend()asmoremory-ememory-emmoremory-emmoremory-emmodifyinginglistsin-place-place-place。

toInSerteLementIntoApythonList,useAppend()toaddtotheend,insert()foreSpificPosition,andextend()formultiplelements.1)useappend()foraddingsingleitemstotheend.2)useAddingsingLeitemStotheend.2)useeapecificindex,toadapecificindex,toadaSpecificIndex,toadaSpecificIndex,blyit'ssssssslorist.3 toaddextext.3

pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)他们areStoredIncoNtiguulMemoryBlocks,mayrequireRealLealLocationWhenAppendingItems,EmpactingPerformance.2)LinkesedlistSwoldOfferefeRefeRefeRefeRefficeInsertions/DeletionsButslowerIndexeDexedAccess,Lestpypytypypytypypytypy

pythonoffersFourmainMethodStoreMoveElement Fromalist:1)删除(值)emovesthefirstoccurrenceofavalue,2)pop(index)emovesanderturnsanelementataSpecifiedIndex,3)delstatementremoveselemsbybybyselementbybyindexorslicebybyindexorslice,and 4)

toresolvea“ dermissionded”错误Whenrunningascript,跟随台词:1)CheckAndAdjustTheScript'Spermissions ofchmod xmyscript.shtomakeitexecutable.2)nesureThEseRethEserethescriptistriptocriptibationalocatiforecationAdirectorywherewhereyOuhaveWritePerMissionsyOuhaveWritePermissionsyYouHaveWritePermissions,susteSyAsyOURHomeRecretectory。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 Linux新版
SublimeText3 Linux最新版

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。