搜索
首页后端开发Python教程评估机器学习分类模型

概要

  • 模型评估的目标是什么?
  • 模型评估的目的是什么,有哪些 常见的评估程序?
  • 分类准确率有什么用,它的作用是什么 限制?
  • 混淆矩阵如何描述 分类器?
  • 可以从混淆矩阵计算哪些指标?

T模型评估的目标是回答问题;

不同型号如何选择? ​​

评估机器学习的过程有助于确定模型的应用可靠性和有效性。这涉及评估不同的因素,例如其性能、指标以及预测或决策的准确性。

无论您选择使用什么模型,您都需要一种在模型之间进行选择的方法:不同的模型类型、调整参数和功能。此外,您还需要一个模型评估程序来估计模型对未见过的数据的泛化能力。最后,您需要一个评估程序来与其他程序配合使用,以量化您的模型性能。

在我们继续之前,让我们回顾一下一些不同的模型评估程序及其运作方式。

模型评估程序及其运作方式。

  1. 使用相同数据进行训练和测试
    • 奖励过于复杂的模型,这些模型“过度拟合”训练数据并且不一定具有泛化能力
  2. 训练/测试分开
    • 将数据集分成两部分,以便可以在不同的数据上训练和测试模型
    • 更好地估计样本外性能,但仍然是“高方差”估计
    • 因其速度、简单性和灵活性而有用
  3. K 折交叉验证
    • 系统地创建“K”个训练/测试分组并将结果一起平均
    • 更好地估计样本外性能
    • 运行速度比训练/测试分开慢“K”倍。

从上面我们可以推断出:

  • 对相同数据进行训练和测试是过度拟合的一个典型原因,在这种情况下,您构建的模型过于复杂,无法泛化到新数据,而且实际上没有用处。

  • Train_Test_Split 可以更好地估计样本外性能。

  • 通过系统地进行 K 次训练测试分割并将结果平均在一起,K 折交叉验证效果更好。

总之,train_tests_split 由于其速度和简单性,对于交叉验证来说仍然是有利可图的,这就是我们将在本教程中使用的内容。

模型评估指标:

您始终需要一个评估指标来配合您选择的程序,并且您选择的指标取决于您要解决的问题。对于分类问题,可以使用分类精度。但我们将在本指南中重点关注其他重要的分类评估指标。

在我们学习任何新的评估指标之前,让我们回顾一下分类准确性,并讨论它的优点和缺点。

分类准确率

我们为本教程选择了皮马印第安人糖尿病数据集,其中包括 768 名患者的健康数据和糖尿病状况。

Evaluating A Machine Learning Classification Model

让我们读取数据并打印前 5 行数据。如果患者患有糖尿病,则标签栏显示 1,如果患者没有糖尿病,则标签栏显示 0,我们要回答的问题是:

问题: 我们可以根据患者的健康测量结果预测其糖尿病状况吗?

我们定义特征度量 X 和响应向量 Y。我们使用 train_test_split 将 X 和 Y 分成训练集和测试集。

Evaluating A Machine Learning Classification Model

接下来,我们在训练集上训练逻辑回归模型。在拟合步骤中,logreg 模型对象正在学习 X_train 和 Y_train 之间的关系。最后我们对测试集进行类预测。

Evaluating A Machine Learning Classification Model

Evaluating A Machine Learning Classification Model

现在,我们已经对测试集进行了预测,我们可以计算分类准确率,简单来说就是正确预测的百分比。

Evaluating A Machine Learning Classification Model

但是,每当您使用分类准确性作为评估指标时,将其与空准确性进行比较非常重要,这是通过始终预测最频繁的类别可以获得的准确性。

Evaluating A Machine Learning Classification Model

空准确率回答了问题;如果我的模型能够 100% 地预测主要类别,那么它正确的概率是多少?在上面的场景中,y_test 的 32% 为 1(个)。换句话说,预测患者患有糖尿病的愚蠢模型68% 的时间是正确的(即零)。这提供了一个基线,我们可能希望根据该基线来衡量逻辑回归模型。

当我们比较 68% 的空精度和 69% 的模型精度时,我们的模型看起来不太好。这表明分类准确性作为模型评估指标的一个弱点。分类准确性并不能告诉我们有关测试测试的基本分布的任何信息。

总结:

  • 分类准确度是最容易理解的分类指标
  • 但是,它不会告诉您响应值的底层分布
  • 并且,它不会告诉您分类器正在产生什么错误“类型”

现在让我们看看混淆矩阵。

混淆矩阵

混淆矩阵是描述分类模型性能的表格。
它有助于帮助您了解分类器的性能,但它不是模型评估指标;所以你不能告诉 scikit learn 选择具有最佳混淆矩阵的模型。然而,有很多指标可以从混淆矩阵中计算出来,并且可以直接用于在模型之间进行选择。

Evaluating A Machine Learning Classification Model

  • 测试集中的每个观察结果都在恰好一个盒子中表示
  • 这是一个 2x2 矩阵,因为有 2 个响应类别
  • 此处显示的格式通用

让我们解释一下它的一些基本术语。

  • 真阳性 (TP):我们正确预测他们确实患有糖尿病
  • 真阴性 (TN):我们正确预测他们没有患有糖尿病
  • 误报 (FP):我们错误地预测他们确实患有糖尿病(“I 类错误”)
  • 假阴性 (FN):我们错误地预测他们没有患有糖尿病(“II 型错误”)

让我们看看如何计算指标

Evaluating A Machine Learning Classification Model

Evaluating A Machine Learning Classification Model

Evaluating A Machine Learning Classification Model

结论:

  • 混淆矩阵为您提供更完整的图片您的分类器的执行情况
  • 还允许您计算各种分类指标,这些指标可以指导您的模型选择

以上是评估机器学习分类模型的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python和时间:充分利用您的学习时间Python和时间:充分利用您的学习时间Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python:游戏,Guis等Python:游戏,Guis等Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python vs.C:申请和用例Python vs.C:申请和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时的Python计划:一种现实的方法2小时的Python计划:一种现实的方法Apr 11, 2025 am 12:04 AM

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python:探索其主要应用程序Python:探索其主要应用程序Apr 10, 2025 am 09:41 AM

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

您可以在2小时内学到多少python?您可以在2小时内学到多少python?Apr 09, 2025 pm 04:33 PM

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础?如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础?Apr 02, 2025 am 07:18 AM

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到?如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境