数组搜索是数据结构和算法(DSA)中的基本概念。这篇博文将介绍使用 JavaScript 的各种数组搜索技术,从基础到高级。我们将探索 20 个示例,讨论时间复杂度,并提供 LeetCode 练习问题。
线性搜索是最简单的搜索算法,适用于排序和未排序的数组。
时间复杂度: O(n),其中 n 是数组中的元素数量。
function linearSearch(arr, target) { for (let i = 0; i < arr.length; i++) { if (arr[i] === target) { return i; } } return -1; } const arr = [5, 2, 8, 12, 1, 6]; console.log(linearSearch(arr, 8)); // Output: 2 console.log(linearSearch(arr, 3)); // Output: -1
function findAllOccurrences(arr, target) { const result = []; for (let i = 0; i < arr.length; i++) { if (arr[i] === target) { result.push(i); } } return result; } const arr = [1, 2, 3, 4, 2, 5, 2, 6]; console.log(findAllOccurrences(arr, 2)); // Output: [1, 4, 6]
二分搜索是一种在排序数组中搜索的有效算法。
时间复杂度: O(log n)
function binarySearch(arr, target) { let left = 0; let right = arr.length - 1; while (left <= right) { const mid = Math.floor((left + right) / 2); if (arr[mid] === target) { return mid; } else if (arr[mid] < target) { left = mid + 1; } else { right = mid - 1; } } return -1; } const sortedArr = [1, 3, 5, 7, 9, 11, 13, 15]; console.log(binarySearch(sortedArr, 7)); // Output: 3 console.log(binarySearch(sortedArr, 10)); // Output: -1
function recursiveBinarySearch(arr, target, left = 0, right = arr.length - 1) { if (left > right) { return -1; } const mid = Math.floor((left + right) / 2); if (arr[mid] === target) { return mid; } else if (arr[mid] < target) { return recursiveBinarySearch(arr, target, mid + 1, right); } else { return recursiveBinarySearch(arr, target, left, mid - 1); } } const sortedArr = [1, 3, 5, 7, 9, 11, 13, 15]; console.log(recursiveBinarySearch(sortedArr, 13)); // Output: 6 console.log(recursiveBinarySearch(sortedArr, 4)); // Output: -1
跳跃搜索是一种排序数组算法,它通过跳过一些元素来减少比较次数。
时间复杂度: O(√n)
function jumpSearch(arr, target) { const n = arr.length; const step = Math.floor(Math.sqrt(n)); let prev = 0; while (arr[Math.min(step, n) - 1] < target) { prev = step; step += Math.floor(Math.sqrt(n)); if (prev >= n) { return -1; } } while (arr[prev] < target) { prev++; if (prev === Math.min(step, n)) { return -1; } } if (arr[prev] === target) { return prev; } return -1; } const sortedArr = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]; console.log(jumpSearch(sortedArr, 55)); // Output: 10 console.log(jumpSearch(sortedArr, 111)); // Output: -1
插值搜索是针对均匀分布排序数组的二分搜索的改进变体。
时间复杂度: 对于均匀分布的数据,O(log log n),最坏情况下为 O(n)。
function interpolationSearch(arr, target) { let low = 0; let high = arr.length - 1; while (low <= high && target >= arr[low] && target <= arr[high]) { if (low === high) { if (arr[low] === target) return low; return -1; } const pos = low + Math.floor(((target - arr[low]) * (high - low)) / (arr[high] - arr[low])); if (arr[pos] === target) { return pos; } else if (arr[pos] < target) { low = pos + 1; } else { high = pos - 1; } } return -1; } const uniformArr = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]; console.log(interpolationSearch(uniformArr, 64)); // Output: 6 console.log(interpolationSearch(uniformArr, 100)); // Output: -1
指数搜索对于无界搜索很有用,也适用于有界数组。
时间复杂度: O(log n)
function exponentialSearch(arr, target) { if (arr[0] === target) { return 0; } let i = 1; while (i < arr.length && arr[i] <= target) { i *= 2; } return binarySearch(arr, target, i / 2, Math.min(i, arr.length - 1)); } function binarySearch(arr, target, left, right) { while (left <= right) { const mid = Math.floor((left + right) / 2); if (arr[mid] === target) { return mid; } else if (arr[mid] < target) { left = mid + 1; } else { right = mid - 1; } } return -1; } const sortedArr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]; console.log(exponentialSearch(sortedArr, 7)); // Output: 6 console.log(exponentialSearch(sortedArr, 16)); // Output: -1
在较大数组中搜索子数组是 DSA 中的常见问题。
时间复杂度: O(n * m),其中 n 是主数组的长度,m 是子数组的长度。
function naiveSubarraySearch(arr, subArr) { for (let i = 0; i <= arr.length - subArr.length; i++) { let j; for (j = 0; j < subArr.length; j++) { if (arr[i + j] !== subArr[j]) { break; } } if (j === subArr.length) { return i; } } return -1; } const mainArr = [1, 2, 3, 4, 5, 6, 7, 8, 9]; const subArr = [3, 4, 5]; console.log(naiveSubarraySearch(mainArr, subArr)); // Output: 2
时间复杂度: O(n + m)
function kmpSearch(arr, pattern) { const n = arr.length; const m = pattern.length; const lps = computeLPS(pattern); let i = 0, j = 0; while (i < n) { if (pattern[j] === arr[i]) { i++; j++; } if (j === m) { return i - j; } else if (i < n && pattern[j] !== arr[i]) { if (j !== 0) { j = lps[j - 1]; } else { i++; } } } return -1; } function computeLPS(pattern) { const m = pattern.length; const lps = new Array(m).fill(0); let len = 0; let i = 1; while (i < m) { if (pattern[i] === pattern[len]) { len++; lps[i] = len; i++; } else { if (len !== 0) { len = lps[len - 1]; } else { lps[i] = 0; i++; } } } return lps; } const mainArr = [1, 2, 3, 4, 5, 6, 7, 8, 9]; const pattern = [3, 4, 5]; console.log(kmpSearch(mainArr, pattern)); // Output: 2
两指针技术通常用于在排序数组中搜索或处理对时。
时间复杂度: O(n)
function findPairWithSum(arr, target) { let left = 0; let right = arr.length - 1; while (left < right) { const sum = arr[left] + arr[right]; if (sum === target) { return [left, right]; } else if (sum < target) { left++; } else { right--; } } return [-1, -1]; } const sortedArr = [1, 2, 3, 4, 5, 6, 7, 8, 9]; console.log(findPairWithSum(sortedArr, 10)); // Output: [3, 7]
时间复杂度: O(n^2)
function threeSum(arr, target) { arr.sort((a, b) => a - b); const result = []; for (let i = 0; i < arr.length - 2; i++) { if (i > 0 && arr[i] === arr[i - 1]) continue; let left = i + 1; let right = arr.length - 1; while (left < right) { const sum = arr[i] + arr[left] + arr[right]; if (sum === target) { result.push([arr[i], arr[left], arr[right]]); while (left < right && arr[left] === arr[left + 1]) left++; while (left < right && arr[right] === arr[right - 1]) right--; left++; right--; } else if (sum < target) { left++; } else { right--; } } } return result; } const arr = [-1, 0, 1, 2, -1, -4]; console.log(threeSum(arr, 0)); // Output: [[-1, -1, 2], [-1, 0, 1]]
滑动窗口技术对于解决具有连续元素的数组/字符串问题非常有用。
时间复杂度: O(n)
function maxSumSubarray(arr, k) { let maxSum = 0; let windowSum = 0; for (let i = 0; i < k; i++) { windowSum += arr[i]; } maxSum = windowSum; for (let i = k; i < arr.length; i++) { windowSum = windowSum - arr[i - k] + arr[i]; maxSum = Math.max(maxSum, windowSum); } return maxSum; } const arr = [1, 4, 2, 10, 23, 3, 1, 0, 20]; console.log(maxSumSubarray(arr, 4)); // Output: 39
时间复杂度: O(n)
function longestSubstringKDistinct(s, k) { const charCount = new Map(); let left = 0; let maxLength = 0; for (let right = 0; right < s.length; right++) { charCount.set(s[right], (charCount.get(s[right]) || 0) + 1); while (charCount.size > k) { charCount.set(s[left], charCount.get(s[left]) - 1); if (charCount.get(s[left]) === 0) { charCount.delete(s[left]); } left++; } maxLength = Math.max(maxLength, right - left + 1); } return maxLength; } const s = "aabacbebebe"; console.log(longestSubstringKDistinct(s, 3)); // Output: 7
时间复杂度: O(log n)
function searchRotatedArray(arr, target) { let left = 0; let right = arr.length - 1; while (left <= right) { const mid = Math.floor((left + right) / 2); if (arr[mid] === target) { return mid; } if (arr[left] <= arr[mid]) { if (target >= arr[left] && target < arr[mid]) { right = mid - 1; } else { left = mid + 1; } } else { if (target > arr[mid] && target <= arr[right]) { left = mid + 1; } else { right = mid - 1; } } } return -1; } const rotatedArr = [4, 5, 6, 7, 0, 1, 2]; console.log(searchRotatedArray(rotatedArr, 0)); // Output: 4
时间复杂度: O(log(m * n)),其中 m 是行数,n 是列数
function searchMatrix(matrix, target) { if (!matrix.length || !matrix[0].length) return false; const m = matrix.length; const n = matrix[0].length; let left = 0; let right = m * n - 1; while (left <= right) { const mid = Math.floor((left + right) / 2); const midValue = matrix[Math.floor(mid / n)][mid % n]; if (midValue === target) { return true; } else if (midValue < target) { left = mid + 1; } else { right = mid - 1; } } return false; } const matrix = [ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]; console.log(searchMatrix(matrix, 3)); // Output: true
时间复杂度: O(log n)
function findPeakElement(arr) { let left = 0; let right = arr.length - 1; while (left < right) { const mid = Math.floor((left + right) / 2); if (arr[mid] > arr[mid + 1]) { right = mid; } else { left = mid + 1; } } return left; } const arr = [1, 2, 1, 3, 5, 6, 4]; console.log(findPeakElement(arr)); // Output: 5
时间复杂度: O(log n)
function searchUnknownSize(arr, target) { let left = 0; let right = 1; while (arr[right] < target) { left = right; right *= 2; } return binarySearch(arr, target, left, right); } function binarySearch(arr, target, left, right) { while (left <= right) { const mid = Math.floor((left + right) / 2); if (arr[mid] === target) { return mid; } else if (arr[mid] < target) { left = mid + 1; } else { right = mid - 1; } } return -1; } // Assume we have a special array that throws an error when accessing out-of-bounds elements const specialArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]; console.log(searchUnknownSize(specialArray, 7)); // Output: 6
时间复杂度: O(log n)
function findMin(arr) { let left = 0; let right = arr.length - 1; while (left < right) { const mid = Math.floor((left + right) / 2); if (arr[mid] > arr[right]) { left = mid + 1; } else { right = mid; } } return arr[left]; } const rotatedArr = [4, 5, 6, 7, 0, 1, 2]; console.log(findMin(rotatedArr)); // Output: 0
时间复杂度: O(log n)
function searchRange(arr, target) { const left = findBound(arr, target, true); if (left === -1) return [-1, -1]; const right = findBound(arr, target, false); return [left, right]; } function findBound(arr, target, isLeft) { let left = 0; let right = arr.length - 1; let result = -1; while (left <= right) { const mid = Math.floor((left + right) / 2); if (arr[mid] === target) { result = mid; if (isLeft) { right = mid - 1; } else { left = mid + 1; } } else if (arr[mid] < target) { left = mid + 1; } else { right = mid - 1; } } return result; } const arr = [5, 7, 7, 8, 8, 10]; console.log(searchRange(arr, 8)); // Output: [3, 4]
时间复杂度: O(log(min(m, n))),其中 m 和 n 是两个数组的长度
function findMedianSortedArrays(nums1, nums2) { if (nums1.length > nums2.length) { return findMedianSortedArrays(nums2, nums1); } const m = nums1.length; const n = nums2.length; let left = 0; let right = m; while (left <= right) { const partitionX = Math.floor((left + right) / 2); const partitionY = Math.floor((m + n + 1) / 2) - partitionX; const maxLeftX = partitionX === 0 ? -Infinity : nums1[partitionX - 1]; const minRightX = partitionX === m ? Infinity : nums1[partitionX]; const maxLeftY = partitionY === 0 ? -Infinity : nums2[partitionY - 1]; const minRightY = partitionY === n ? Infinity : nums2[partitionY]; if (maxLeftX <= minRightY && maxLeftY <= minRightX) { if ((m + n) % 2 === 0) { return (Math.max(maxLeftX, maxLeftY) + Math.min(minRightX, minRightY)) / 2; } else { return Math.max(maxLeftX, maxLeftY); } } else if (maxLeftX > minRightY) { right = partitionX - 1; } else { left = partitionX + 1; } } throw new Error("Input arrays are not sorted."); } const nums1 = [1, 3]; const nums2 = [2]; console.log(findMedianSortedArrays(nums1, nums2)); // Output: 2
为了进一步测试您对数组搜索的理解和技能,您可以练习以下 15 个 LeetCode 问题:
这些问题涵盖了广泛的数组搜索技术,并将帮助您巩固对本博文中讨论的概念的理解。
总之,掌握数组搜索技术对于精通数据结构和算法至关重要。通过理解和实现这些不同的方法,您将能够更好地解决复杂的问题并优化您的代码。请记住分析每种方法的时间和空间复杂度,并根据您问题的具体要求选择最合适的一种。
祝您编码和搜索愉快!
以上是使用 JavaScript 在 DSA 中进行数组搜索:从基础到高级的详细内容。更多信息请关注PHP中文网其他相关文章!