编辑 | 萝卜皮
单细胞测序已成为解析复杂疾病细胞复杂性的强力工具。然而,其高昂成本限制了其在生物医学研究中的广泛应用。
传统细胞反卷积方法可从更廉价的批量测序数据中推断细胞类型比例,但无法提供单细胞分析所需的精细分辨率。
为了应对这一挑战,加拿大麦吉尔大学的研究人员开发了「scSemiProfiler」,该方法将深度生成模型与主动学习策略相结合,创建了一个创新的计算框架。
scSemiProfiler具有高度精确性,能够推断出大群体中的单细胞概况。它可以与真实的单细胞分析数据紧密整合,支持精细的细胞分析。
该研究题为「scSemiProfiler: Advancing large-scale single-cell studies through semi-profiling with deep generative models and active learning」,已于 2024 年 7 月 16 日发表在《Nature Communications》杂志上。
单细胞测序技术极大地改变了生物学研究,揭示了细胞间的细微差别,促进了生物标志物发现和个性化治疗策略的发展。然而,单细胞测序的高昂成本(例如,2023 年测序 2 万个细胞的成本估计为 6000 美元)限制了其大规模研究。
解卷积方法
为了降低成本,有许多解卷积方法可以解析混合数据中的细胞群体,包括:
- CIBERSORTx
- Bisque
- DWLS
- MuSiC
- NNLS
- EPIC
- Scaden
- TAPE
这些方法在经济性和数据分辨率之间取得了平衡,但在分辨率和准确性上仍存在局限,无法达到单细胞级别的分析。
单细胞分辨率分析
单细胞分辨率分析对于深入理解疾病复杂性及其治疗反应至关重要。它可以进行以下分析:
- UMAP
- 路径激活模式分析
- 生物标志物发现
- 基因功能富集
- 细胞-细胞相互作用
- 拟时序轨迹分析
结合机器学习技术,有助于解码细胞异质性和动态变化。
scSemiProfiler
为了解决上述挑战并提供一种经济有效的广泛单细胞测序方法,麦吉尔大学的研究团队推出了 single-cell Semi-profiler (scSemiProfiler)。这种深度生成计算工具旨在显著提高单细胞分析的精度和深度。
概述
scSemiProfiler 是一种更经济、更可扩展的单细胞测序选项,从而以更高的可及性促进高级单细胞分析。
方法
该工具将主动学习技术与深度生成神经网络算法有效结合起来,旨在以更实惠的价格提供单细胞分辨率数据。scSemiProfiler 旨在同时实现 semi-profiled 过程中的两个基本目标:
- scSemiProfiler 的主动学习模块整合了深度学习模型和大量数据的信息,智能地选择最具信息量的样本进行实际的单细胞测序。
- scSemiProfiler 的深度生成模型组件有效地将来自代表性样本的单细胞数据与该群体的批量测序数据合并,通过计算推断剩余非代表性样本的单细胞数据。
1. 图示:semi-profiled 和 real-profiled 在 iMGL 数据集的比较分析。(来源:论文) - 这种深度神经网络方法可以将目标批量数据更详细地「反卷积」为精确的单细胞水平测量值。因此,scSemiProfiler 只需对批量测序和代表性单细胞测序进行预算,即可输出研究中所有样本的单细胞数据。
- 目前为止,scSemiProfiler 是同类产品中第一个专为从大量测序数据中进行如此复杂的单细胞水平计算分解而设计的产品。
图示:主动学习展示了其在单细胞水平上选择性分析最具信息量的样本的能力。(来源:论文)
通过对各种数据集的全面评估,scSemiProfiler 始终如一地生成 semi-profiled 的单细胞数据,这些数据与实际的单细胞数据集紧密相关,并准确反映下游任务的结果。
因此,scSemiProfiler 有助于改善获取单细胞数据以进行大规模研究,包括疾病队列研究等。
通过降低大规模单细胞研究的成本,scSemiProfiler 有望促进单细胞技术在广泛的生物医学研究中的应用。这一进步将扩大生物学研究的范围并增强其深度。
论文链接:
https://www.nature.com/articles/s41467-024-50150-1
以上是更高分辨率,更经济,深度生成模型与主动学习策略结合,推进大规模单细胞研究的详细内容。更多信息请关注PHP中文网其他相关文章!

Apollo Research的一份新报告显示,先进的AI系统的不受检查的内部部署构成了重大风险。 在大型人工智能公司中缺乏监督,普遍存在,允许潜在的灾难性结果

传统测谎仪已经过时了。依靠腕带连接的指针,打印出受试者生命体征和身体反应的测谎仪,在识破谎言方面并不精确。这就是为什么测谎结果通常不被法庭采纳的原因,尽管它曾导致许多无辜者入狱。 相比之下,人工智能是一个强大的数据引擎,其工作原理是全方位观察。这意味着科学家可以通过多种途径将人工智能应用于寻求真相的应用中。 一种方法是像测谎仪一样分析被审问者的生命体征反应,但采用更详细、更精确的比较分析。 另一种方法是利用语言标记来分析人们实际所说的话,并运用逻辑和推理。 俗话说,一个谎言会滋生另一个谎言,最终

航空航天业是创新的先驱,它利用AI应对其最复杂的挑战。 现代航空的越来越复杂性需要AI的自动化和实时智能功能,以提高安全性,降低操作

机器人技术的飞速发展为我们带来了一个引人入胜的案例研究。 来自Noetix的N2机器人重达40多磅,身高3英尺,据说可以后空翻。Unitree公司推出的G1机器人重量约为N2的两倍,身高约4英尺。比赛中还有许多体型更小的类人机器人参赛,甚至还有一款由风扇驱动前进的机器人。 数据解读 这场半程马拉松吸引了超过12,000名观众,但只有21台类人机器人参赛。尽管政府指出参赛机器人赛前进行了“强化训练”,但并非所有机器人均完成了全程比赛。 冠军——由北京类人机器人创新中心研发的Tiangong Ult

人工智能以目前的形式并不是真正智能的。它擅长模仿和完善现有数据。 我们不是在创造人工智能,而是人工推断 - 处理信息的机器,而人类则

一份报告发现,在谷歌相册Android版7.26版本的代码中隐藏了一个更新的界面,每次查看照片时,都会在屏幕底部显示一行新检测到的面孔缩略图。 新的面部缩略图缺少姓名标签,所以我怀疑您需要单独点击它们才能查看有关每个检测到的人员的更多信息。就目前而言,此功能除了谷歌相册已在您的图像中找到这些人之外,不提供任何其他信息。 此功能尚未上线,因此我们不知道谷歌将如何准确地使用它。谷歌可以使用缩略图来加快查找所选人员的更多照片的速度,或者可能用于其他目的,例如选择要编辑的个人。我们拭目以待。 就目前而言

增强者通过教授模型根据人类反馈进行调整来震撼AI的开发。它将监督的学习基金会与基于奖励的更新融合在一起,使其更安全,更准确,真正地帮助

科学家已经广泛研究了人类和更简单的神经网络(如秀丽隐杆线虫中的神经网络),以了解其功能。 但是,出现了一个关键问题:我们如何使自己的神经网络与新颖的AI一起有效地工作


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器