如何使用 LangChain 框架、IRIS 向量搜索和 LLM 根据用户提示生成 IRIS 兼容 SQL 的实验。
本文基于此笔记本。您可以在 OpenExchange 中使用此应用程序在随时可用的环境中运行它。
首先,我们需要安装必要的库:
!pip install --upgrade --quiet langchain langchain-openai langchain-iris pandas
接下来,我们导入所需的模块并设置环境:
import os import datetime import hashlib from copy import deepcopy from sqlalchemy import create_engine import getpass import pandas as pd from langchain_core.prompts import PromptTemplate, ChatPromptTemplate from langchain_core.example_selectors import SemanticSimilarityExampleSelector from langchain_openai import OpenAIEmbeddings, ChatOpenAI from langchain.docstore.document import Document from langchain_community.document_loaders import DataFrameLoader from langchain.text_splitter import CharacterTextSplitter from langchain_core.output_parsers import StrOutputParser from langchain.globals import set_llm_cache from langchain.cache import SQLiteCache from langchain_iris import IRISVector
我们将使用 SQLiteCache 来缓存 LLM 调用:
# Cache for LLM calls set_llm_cache(SQLiteCache(database_path=".langchain.db"))
设置IRIS数据库连接参数:
# IRIS database connection parameters os.environ["ISC_LOCAL_SQL_HOSTNAME"] = "localhost" os.environ["ISC_LOCAL_SQL_PORT"] = "1972" os.environ["ISC_LOCAL_SQL_NAMESPACE"] = "IRISAPP" os.environ["ISC_LOCAL_SQL_USER"] = "_system" os.environ["ISC_LOCAL_SQL_PWD"] = "SYS"
如果环境中尚未设置 OpenAI API 密钥,则提示用户输入:
if not "OPENAI_API_KEY" in os.environ: os.environ["OPENAI_API_KEY"] = getpass.getpass()
为 IRIS 数据库创建连接字符串:
# IRIS database connection string args = { 'hostname': os.getenv("ISC_LOCAL_SQL_HOSTNAME"), 'port': os.getenv("ISC_LOCAL_SQL_PORT"), 'namespace': os.getenv("ISC_LOCAL_SQL_NAMESPACE"), 'username': os.getenv("ISC_LOCAL_SQL_USER"), 'password': os.getenv("ISC_LOCAL_SQL_PWD") } iris_conn_str = f"iris://{args['username']}:{args['password']}@{args['hostname']}:{args['port']}/{args['namespace']}"
建立与 IRIS 数据库的连接:
# Connection to IRIS database engine = create_engine(iris_conn_str) cnx = engine.connect().connection
准备一个字典来保存系统提示的上下文信息:
# Dict for context information for system prompt context = {} context["top_k"] = 3
为了将用户输入转换为与 IRIS 数据库兼容的 SQL 查询,我们需要为语言模型创建有效的提示。我们从初始提示开始,它提供了生成 SQL 查询的基本说明。该模板源自LangChain默认的MSSQL提示,并针对IRIS数据库进行了定制。
# Basic prompt template with IRIS database SQL instructions iris_sql_template = """ You are an InterSystems IRIS expert. Given an input question, first create a syntactically correct InterSystems IRIS query to run and return the answer to the input question. Unless the user specifies in the question a specific number of examples to obtain, query for at most {top_k} results using the TOP clause as per InterSystems IRIS. You can order the results to return the most informative data in the database. Never query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap each column name in single quotes ('') to denote them as delimited identifiers. Pay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table. Pay attention to use CAST(CURRENT_DATE as date) function to get the current date, if the question involves "today". Use double quotes to delimit columns identifiers. Return just plain SQL; don't apply any kind of formatting. """
此基本提示将语言模型 (LLM) 配置为充当 SQL 专家,并为 IRIS 数据库提供特定指导。接下来,我们提供一个辅助提示,其中包含有关数据库架构的信息,以避免出现幻觉。
# SQL template extension for including tables context information tables_prompt_template = """ Only use the following tables: {table_info} """
为了提高法学硕士回答的准确性,我们使用了一种称为“少样本提示”的技术。这涉及向法学硕士展示一些例子。
# SQL template extension for including few shots prompt_sql_few_shots_template = """ Below are a number of examples of questions and their corresponding SQL queries. {examples_value} """
我们为少量示例定义模板:
# Few shots prompt template example_prompt_template = "User input: {input}\nSQL query: {query}" example_prompt = PromptTemplate.from_template(example_prompt_template)
我们使用少样本模板构建用户提示:
# User prompt template user_prompt = "\n" + example_prompt.invoke({"input": "{input}", "query": ""}).to_string()
最后,我们组合所有提示来创建最终的提示:
# Complete prompt template prompt = ( ChatPromptTemplate.from_messages([("system", iris_sql_template)]) + ChatPromptTemplate.from_messages([("system", tables_prompt_template)]) + ChatPromptTemplate.from_messages([("system", prompt_sql_few_shots_template)]) + ChatPromptTemplate.from_messages([("human", user_prompt)]) ) prompt
此提示需要变量 example_value、input、table_info 和 top_k。
提示的结构如下:
ChatPromptTemplate( input_variables=['examples_value', 'input', 'table_info', 'top_k'], messages=[ SystemMessagePromptTemplate( prompt=PromptTemplate( input_variables=['top_k'], template=iris_sql_template ) ), SystemMessagePromptTemplate( prompt=PromptTemplate( input_variables=['table_info'], template=tables_prompt_template ) ), SystemMessagePromptTemplate( prompt=PromptTemplate( input_variables=['examples_value'], template=prompt_sql_few_shots_template ) ), HumanMessagePromptTemplate( prompt=PromptTemplate( input_variables=['input'], template=user_prompt ) ) ] )
为了可视化提示将如何发送到 LLM,我们可以使用所需变量的占位符值:
prompt_value = prompt.invoke({ "top_k": "<top_k>", "table_info": "<table_info>", "examples_value": "<examples_value>", "input": "<input>" }) print(prompt_value.to_string())
System: You are an InterSystems IRIS expert. Given an input question, first create a syntactically correct InterSystems IRIS query to run and return the answer to the input question. Unless the user specifies in the question a specific number of examples to obtain, query for at most <top_k> results using the TOP clause as per InterSystems IRIS. You can order the results to return the most informative data in the database. Never query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap each column name in single quotes ('') to denote them as delimited identifiers. Pay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table. Pay attention to use CAST(CURRENT_DATE as date) function to get the current date, if the question involves "today". Use double quotes to delimit columns identifiers. Return just plain SQL; don't apply any kind of formatting. System: Only use the following tables: <table_info> System: Below are a number of examples of questions and their corresponding SQL queries. <examples_value> Human: User input: <input> SQL query:
现在,我们准备通过提供必要的变量将此提示发送给 LLM。准备好后,让我们继续下一步。
为了创建准确的 SQL 查询,我们需要向语言模型 (LLM) 提供有关数据库表的详细信息。如果没有这些信息,法学硕士可能会生成看似合理但由于幻觉而不正确的查询。因此,我们的第一步是创建一个从 IRIS 数据库检索表定义的函数。
以下函数查询 INFORMATION_SCHEMA 以获取指定模式的表定义。如果提供了特定的表,它将检索该表的定义;否则,它将检索架构中所有表的定义。
def get_table_definitions_array(cnx, schema, table=None): cursor = cnx.cursor() # Base query to get columns information query = """ SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT, PRIMARY_KEY, null EXTRA FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_SCHEMA = %s """ # Parameters for the query params = [schema] # Adding optional filters if table: query += " AND TABLE_NAME = %s" params.append(table) # Execute the query cursor.execute(query, params) # Fetch the results rows = cursor.fetchall() # Process the results to generate the table definition(s) table_definitions = {} for row in rows: table_schema, table_name, column_name, column_type, is_nullable, column_default, column_key, extra = row if table_name not in table_definitions: table_definitions[table_name] = [] table_definitions[table_name].append({ "column_name": column_name, "column_type": column_type, "is_nullable": is_nullable, "column_default": column_default, "column_key": column_key, "extra": extra }) primary_keys = {} # Build the output string result = [] for table_name, columns in table_definitions.items(): table_def = f"CREATE TABLE {schema}.{table_name} (\n" column_definitions = [] for column in columns: column_def = f" {column['column_name']} {column['column_type']}" if column['is_nullable'] == "NO": column_def += " NOT NULL" if column['column_default'] is not None: column_def += f" DEFAULT {column['column_default']}" if column['extra']: column_def += f" {column['extra']}" column_definitions.append(column_def) if table_name in primary_keys: pk_def = f" PRIMARY KEY ({', '.join(primary_keys[table_name])})" column_definitions.append(pk_def) table_def += ",\n".join(column_definitions) table_def += "\n);" result.append(table_def) return result
在此示例中,我们使用 Aviation 模式,可在此处获取。
# Retrieve table definitions for the Aviation schema tables = get_table_definitions_array(cnx, "Aviation") print(tables)
此函数返回 Aviation 模式中所有表的 CREATE TABLE 语句:
[ 'CREATE TABLE Aviation.Aircraft (\n Event bigint NOT NULL,\n ID varchar NOT NULL,\n AccidentExplosion varchar,\n AccidentFire varchar,\n AirFrameHours varchar,\n AirFrameHoursSince varchar,\n AirFrameHoursSinceLastInspection varchar,\n AircraftCategory varchar,\n AircraftCertMaxGrossWeight integer,\n AircraftHomeBuilt varchar,\n AircraftKey integer NOT NULL,\n AircraftManufacturer varchar,\n AircraftModel varchar,\n AircraftRegistrationClass varchar,\n AircraftSerialNo varchar,\n AircraftSeries varchar,\n Damage varchar,\n DepartureAirportId varchar,\n DepartureCity varchar,\n DepartureCountry varchar,\n DepartureSameAsEvent varchar,\n DepartureState varchar,\n DepartureTime integer,\n DepartureTimeZone varchar,\n DestinationAirportId varchar,\n DestinationCity varchar,\n DestinationCountry varchar,\n DestinationSameAsLocal varchar,\n DestinationState varchar,\n EngineCount integer,\n EvacuationOccurred varchar,\n EventId varchar NOT NULL,\n FlightMedical varchar,\n FlightMedicalType varchar,\n FlightPhase integer,\n FlightPlan varchar,\n FlightPlanActivated varchar,\n FlightSiteSeeing varchar,\n FlightType varchar,\n GearType varchar,\n LastInspectionDate timestamp,\n LastInspectionType varchar,\n Missing varchar,\n OperationDomestic varchar,\n OperationScheduled varchar,\n OperationType varchar,\n OperatorCertificate varchar,\n OperatorCertificateNum varchar,\n OperatorCode varchar,\n OperatorCountry varchar,\n OperatorIndividual varchar,\n OperatorName varchar,\n OperatorState varchar,\n Owner varchar,\n OwnerCertified varchar,\n OwnerCountry varchar,\n OwnerState varchar,\n RegistrationNumber varchar,\n ReportedToICAO varchar,\n SeatsCabinCrew integer,\n SeatsFlightCrew integer,\n SeatsPassengers integer,\n SeatsTotal integer,\n SecondPilot varchar,\n childsub bigint NOT NULL DEFAULT $i(^Aviation.EventC("Aircraft"))\n);', 'CREATE TABLE Aviation.Crew (\n Aircraft varchar NOT NULL,\n ID varchar NOT NULL,\n Age integer,\n AircraftKey integer NOT NULL,\n Category varchar,\n CrewNumber integer NOT NULL,\n EventId varchar NOT NULL,\n Injury varchar,\n MedicalCertification varchar,\n MedicalCertificationDate timestamp,\n MedicalCertificationValid varchar,\n Seat varchar,\n SeatbeltUsed varchar,\n Sex varchar,\n ShoulderHarnessUsed varchar,\n ToxicologyTestPerformed varchar,\n childsub bigint NOT NULL DEFAULT $i(^Aviation.AircraftC("Crew"))\n);', 'CREATE TABLE Aviation.Event (\n ID bigint NOT NULL DEFAULT $i(^Aviation.EventD),\n AirportDirection integer,\n AirportDistance varchar,\n AirportElevation integer,\n AirportLocation varchar,\n AirportName varchar,\n Altimeter varchar,\n EventDate timestamp,\n EventId varchar NOT NULL,\n EventTime integer,\n FAADistrictOffice varchar,\n InjuriesGroundFatal integer,\n InjuriesGroundMinor integer,\n InjuriesGroundSerious integer,\n InjuriesHighest varchar,\n InjuriesTotal integer,\n InjuriesTotalFatal integer,\n InjuriesTotalMinor integer,\n InjuriesTotalNone integer,\n InjuriesTotalSerious integer,\n InvestigatingAgency varchar,\n LightConditions varchar,\n LocationCity varchar,\n LocationCoordsLatitude double,\n LocationCoordsLongitude double,\n LocationCountry varchar,\n LocationSiteZipCode varchar,\n LocationState varchar,\n MidAir varchar,\n NTSBId varchar,\n NarrativeCause varchar,\n NarrativeFull varchar,\n NarrativeSummary varchar,\n OnGroundCollision varchar,\n SkyConditionCeiling varchar,\n SkyConditionCeilingHeight integer,\n SkyConditionNonCeiling varchar,\n SkyConditionNonCeilingHeight integer,\n TimeZone varchar,\n Type varchar,\n Visibility varchar,\n WeatherAirTemperature integer,\n WeatherPrecipitation varchar,\n WindDirection integer,\n WindDirectionIndicator varchar,\n WindGust integer,\n WindGustIndicator varchar,\n WindVelocity integer,\n WindVelocityIndicator varchar\n);' ]
有了这些表定义,我们就可以继续下一步,即将它们集成到我们的 LLM 提示中。这确保了 LLM 在生成 SQL 查询时拥有有关数据库架构的准确且全面的信息。
使用数据库时,尤其是较大的数据库时,在提示中发送所有表的数据定义语言 (DDL) 可能不切实际。虽然这种方法可能适用于小型数据库,但现实世界的数据库通常包含数百或数千个表,导致处理所有这些表的效率很低。
此外,语言模型不太可能需要了解数据库中的每个表才能有效生成 SQL 查询。为了应对这一挑战,我们可以利用语义搜索功能根据用户的查询仅选择最相关的表。
我们通过使用语义搜索和 IRIS 矢量搜索来实现这一目标。请注意,如果 SQL 元素标识符(例如表、字段和键)具有有意义的名称,则此方法最有效。如果您的标识符是任意代码,请考虑使用数据字典。
首先,将表定义提取到 pandas DataFrame 中:
# Retrieve table definitions into a pandas DataFrame table_def = get_table_definitions_array(cnx=cnx, schema='Aviation') table_df = pd.DataFrame(data=table_def, columns=["col_def"]) table_df["id"] = table_df.index + 1 table_df
The DataFrame (table_df) will look something like this:
col_def | id | |
---|---|---|
0 | CREATE TABLE Aviation.Aircraft (\n Event bigi... | 1 |
1 | CREATE TABLE Aviation.Crew (\n Aircraft varch... | 2 |
2 | CREATE TABLE Aviation.Event (\n ID bigint NOT... | 3 |
Next, split the table definitions into Langchain Documents. This step is crucial for handling large chunks of text and extracting text embeddings:
loader = DataFrameLoader(table_df, page_content_column="col_def") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=400, chunk_overlap=20, separator="\n") tables_docs = text_splitter.split_documents(documents) tables_docs
The resulting tables_docs list contains split documents with metadata, like so:
[Document(metadata={'id': 1}, page_content='CREATE TABLE Aviation.Aircraft (\n Event bigint NOT NULL,\n ID varchar NOT NULL,\n ...'), Document(metadata={'id': 2}, page_content='CREATE TABLE Aviation.Crew (\n Aircraft varchar NOT NULL,\n ID varchar NOT NULL,\n ...'), Document(metadata={'id': 3}, page_content='CREATE TABLE Aviation.Event (\n ID bigint NOT NULL DEFAULT $i(^Aviation.EventD),\n ...')]
Now, use the IRISVector class from langchain-iris to extract embedding vectors and store them:
tables_vector_store = IRISVector.from_documents( embedding=OpenAIEmbeddings(), documents=tables_docs, connection_string=iris_conn_str, collection_name="sql_tables", pre_delete_collection=True )
Note: The pre_delete_collection flag is set to True for demonstration purposes to ensure a fresh collection in each test run. In a production environment, this flag should generally be set to False.
With the table embeddings stored, you can now query for relevant tables based on user input:
input_query = "List the first 2 manufacturers" relevant_tables_docs = tables_vector_store.similarity_search(input_query, k=3) relevant_tables_docs
For example, querying for manufacturers might return:
[Document(metadata={'id': 1}, page_content='GearType varchar,\n LastInspectionDate timestamp,\n ...'), Document(metadata={'id': 1}, page_content='AircraftModel varchar,\n AircraftRegistrationClass varchar,\n ...'), Document(metadata={'id': 3}, page_content='LocationSiteZipCode varchar,\n LocationState varchar,\n ...')]
From the metadata, you can see that only table ID 1 (Aviation.Aircraft) is relevant, which aligns with the query.
While this approach is generally effective, it may not always be perfect. For instance, querying for crash sites might also return less relevant tables:
input_query = "List the top 10 most crash sites" relevant_tables_docs = tables_vector_store.similarity_search(input_query, k=3) relevant_tables_docs
Results might include:
[Document(metadata={'id': 3}, page_content='LocationSiteZipCode varchar,\n LocationState varchar,\n ...'), Document(metadata={'id': 3}, page_content='InjuriesGroundSerious integer,\n InjuriesHighest varchar,\n ...'), Document(metadata={'id': 1}, page_content='CREATE TABLE Aviation.Aircraft (\n Event bigint NOT NULL,\n ID varchar NOT NULL,\n ...')]
Despite retrieving the correct Aviation.Event table twice, the Aviation.Aircraft table may also appear, which could be improved with additional filtering or thresholding. This is beyond the scope of this example and will be left for future implementations.
To automate this process, define a function to filter and return the relevant tables based on user input:
def get_relevant_tables(user_input, tables_vector_store, table_df): relevant_tables_docs = tables_vector_store.similarity_search(user_input) relevant_tables_docs_indices = [x.metadata["id"] for x in relevant_tables_docs] indices = table_df["id"].isin(relevant_tables_docs_indices) relevant_tables_array = [x for x in table_df[indices]["col_def"]] return relevant_tables_array
This function will help in efficiently retrieving only the relevant tables to send to the LLM, reducing the prompt length and improving overall query performance.
When working with language models (LLMs), providing them with relevant examples helps ensure accurate and contextually appropriate responses. These examples, referred to as "few-shot" examples, guide the LLM in understanding the structure and context of the queries it should handle.
In our case, we need to populate the examples_value variable with a diverse set of SQL queries that cover a broad spectrum of IRIS SQL syntax and the tables available in the database. This helps prevent the LLM from generating incorrect or irrelevant queries.
Below is a list of example queries designed to illustrate various SQL operations:
examples = [ {"input": "List all aircrafts.", "query": "SELECT * FROM Aviation.Aircraft"}, {"input": "Find all incidents for the aircraft with ID 'N12345'.", "query": "SELECT * FROM Aviation.Event WHERE EventId IN (SELECT EventId FROM Aviation.Aircraft WHERE ID = 'N12345')"}, {"input": "List all incidents in the 'Commercial' operation type.", "query": "SELECT * FROM Aviation.Event WHERE EventId IN (SELECT EventId FROM Aviation.Aircraft WHERE OperationType = 'Commercial')"}, {"input": "Find the total number of incidents.", "query": "SELECT COUNT(*) FROM Aviation.Event"}, {"input": "List all incidents that occurred in 'Canada'.", "query": "SELECT * FROM Aviation.Event WHERE LocationCountry = 'Canada'"}, {"input": "How many incidents are associated with the aircraft with AircraftKey 5?", "query": "SELECT COUNT(*) FROM Aviation.Aircraft WHERE AircraftKey = 5"}, {"input": "Find the total number of distinct aircrafts involved in incidents.", "query": "SELECT COUNT(DISTINCT AircraftKey) FROM Aviation.Aircraft"}, {"input": "List all incidents that occurred after 5 PM.", "query": "SELECT * FROM Aviation.Event WHERE EventTime > 1700"}, {"input": "Who are the top 5 operators by the number of incidents?", "query": "SELECT TOP 5 OperatorName, COUNT(*) AS IncidentCount FROM Aviation.Aircraft GROUP BY OperatorName ORDER BY IncidentCount DESC"}, {"input": "Which incidents occurred in the year 2020?", "query": "SELECT * FROM Aviation.Event WHERE YEAR(EventDate) = '2020'"}, {"input": "What was the month with most events in the year 2020?", "query": "SELECT TOP 1 MONTH(EventDate) EventMonth, COUNT(*) EventCount FROM Aviation.Event WHERE YEAR(EventDate) = '2020' GROUP BY MONTH(EventDate) ORDER BY EventCount DESC"}, {"input": "How many crew members were involved in incidents?", "query": "SELECT COUNT(*) FROM Aviation.Crew"}, {"input": "List all incidents with detailed aircraft information for incidents that occurred in the year 2012.", "query": "SELECT e.EventId, e.EventDate, a.AircraftManufacturer, a.AircraftModel, a.AircraftCategory FROM Aviation.Event e JOIN Aviation.Aircraft a ON e.EventId = a.EventId WHERE Year(e.EventDate) = 2012"}, {"input": "Find all incidents where there were more than 5 injuries and include the aircraft manufacturer and model.", "query": "SELECT e.EventId, e.InjuriesTotal, a.AircraftManufacturer, a.AircraftModel FROM Aviation.Event e JOIN Aviation.Aircraft a ON e.EventId = a.EventId WHERE e.InjuriesTotal > 5"}, {"input": "List all crew members involved in incidents with serious injuries, along with the incident date and location.", "query": "SELECT c.CrewNumber AS 'Crew Number', c.Age, c.Sex AS Gender, e.EventDate AS 'Event Date', e.LocationCity AS 'Location City', e.LocationState AS 'Location State' FROM Aviation.Crew c JOIN Aviation.Event e ON c.EventId = e.EventId WHERE c.Injury = 'Serious'"} ]
Given the ever-expanding list of examples, it’s impractical to provide the LLM with all of them. Instead, we use IRIS Vector Search along with the SemanticSimilarityExampleSelector class to identify the most relevant examples based on user prompts.
example_selector = SemanticSimilarityExampleSelector.from_examples( examples, OpenAIEmbeddings(), IRISVector, k=5, input_keys=["input"], connection_string=iris_conn_str, collection_name="sql_samples", pre_delete_collection=True )
Note: The pre_delete_collection flag is used here for demonstration purposes to ensure a fresh collection in each test run. In a production environment, this flag should be set to False to avoid unnecessary deletions.
To find the most relevant examples for a given input, use the selector as follows:
input_query = "Find all events in 2010 informing the Event Id and date, location city and state, aircraft manufacturer and model." relevant_examples = example_selector.select_examples({"input": input_query})
The results might look like this:
[{'input': 'List all incidents with detailed aircraft information for incidents that occurred in the year 2012.', 'query': 'SELECT e.EventId, e.EventDate, a.AircraftManufacturer, a.AircraftModel, a.AircraftCategory FROM Aviation.Event e JOIN Aviation.Aircraft a ON e.EventId = a.EventId WHERE Year(e.EventDate) = 2012'}, {'input': "Find all incidents for the aircraft with ID 'N12345'.", 'query': "SELECT * FROM Aviation.Event WHERE EventId IN (SELECT EventId FROM Aviation.Aircraft WHERE ID = 'N12345')"}, {'input': 'Find all incidents where there were more than 5 injuries and include the aircraft manufacturer and model.', 'query': 'SELECT e.EventId, e.InjuriesTotal, a.AircraftManufacturer, a.AircraftModel FROM Aviation.Event e JOIN Aviation.Aircraft a ON e.EventId = a.EventId WHERE e.InjuriesTotal > 5'}, {'input': 'List all aircrafts.', 'query': 'SELECT * FROM Aviation.Aircraft'}, {'input': 'Find the total number of distinct aircrafts involved in incidents.', 'query': 'SELECT COUNT(DISTINCT AircraftKey) FROM Aviation.Aircraft'}]
If you specifically need examples related to quantities, you can query the selector accordingly:
input_query = "What is the number of incidents involving Boeing aircraft." quantity_examples = example_selector.select_examples({"input": input_query})
The output may be:
[{'input': 'How many incidents are associated with the aircraft with AircraftKey 5?', 'query': 'SELECT COUNT(*) FROM Aviation.Aircraft WHERE AircraftKey = 5'}, {'input': 'Find the total number of distinct aircrafts involved in incidents.', 'query': 'SELECT COUNT(DISTINCT AircraftKey) FROM Aviation.Aircraft'}, {'input': 'How many crew members were involved in incidents?', 'query': 'SELECT COUNT(*) FROM Aviation.Crew'}, {'input': 'Find all incidents where there were more than 5 injuries and include the aircraft manufacturer and model.', 'query': 'SELECT e.EventId, e.InjuriesTotal, a.AircraftManufacturer, a.AircraftModel FROM Aviation.Event e JOIN Aviation.Aircraft a ON e.EventId = a.EventId WHERE e.InjuriesTotal > 5'}, {'input': 'List all incidents with detailed aircraft information for incidents that occurred in the year 2012.', 'query': 'SELECT e.EventId, e.EventDate, a.AircraftManufacturer, a.AircraftModel, a.AircraftCategory FROM Aviation.Event e JOIN Aviation.Aircraft a ON e.EventId = a.EventId WHERE Year(e.EventDate) = 2012'}]
This output includes examples that specifically address counting and quantities.
While the SemanticSimilarityExampleSelector is powerful, it’s important to note that not all selected examples may be perfect. Future improvements may involve adding filters or thresholds to exclude less relevant results, ensuring that only the most appropriate examples are provided to the LLM.
To assess the performance of the prompt and SQL query generation, we need to set up and run a series of tests. The goal is to evaluate how well the LLM generates SQL queries based on user inputs, with and without the use of example-based few shots.
We start by defining a function that uses the LLM to generate SQL queries based on the provided context, prompt, user input, and other parameters:
def get_sql_from_text(context, prompt, user_input, use_few_shots, tables_vector_store, table_df, example_selector=None, example_prompt=None): relevant_tables = get_relevant_tables(user_input, tables_vector_store, table_df) context["table_info"] = "\n\n".join(relevant_tables) examples = example_selector.select_examples({"input": user_input}) if example_selector else [] context["examples_value"] = "\n\n".join([ example_prompt.invoke(x).to_string() for x in examples ]) model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) output_parser = StrOutputParser() chain_model = prompt | model | output_parser response = chain_model.invoke({ "top_k": context["top_k"], "table_info": context["table_info"], "examples_value": context["examples_value"], "input": user_input }) return response
Test the prompt with and without examples:
# Prompt execution **with** few shots input = "Find all events in 2010 informing the Event Id and date, location city and state, aircraft manufacturer and model." response_with_few_shots = get_sql_from_text( context, prompt, user_input=input, use_few_shots=True, tables_vector_store=tables_vector_store, table_df=table_df, example_selector=example_selector, example_prompt=example_prompt, ) print(response_with_few_shots)
SELECT e.EventId, e.EventDate, e.LocationCity, e.LocationState, a.AircraftManufacturer, a.AircraftModel FROM Aviation.Event e JOIN Aviation.Aircraft a ON e.EventId = a.EventId WHERE Year(e.EventDate) = 2010
# Prompt execution **without** few shots input = "Find all events in 2010 informing the Event Id and date, location city and state, aircraft manufacturer and model." response_with_no_few_shots = get_sql_from_text( context, prompt, user_input=input, use_few_shots=False, tables_vector_store=tables_vector_store, table_df=table_df, ) print(response_with_no_few_shots)
SELECT TOP 3 "EventId", "EventDate", "LocationCity", "LocationState", "AircraftManufacturer", "AircraftModel" FROM Aviation.Event e JOIN Aviation.Aircraft a ON e.ID = a.Event WHERE e.EventDate >= '2010-01-01' AND e.EventDate < '2011-01-01'
To test the generated SQL queries, we define some utility functions:
def execute_sql_query(cnx, query): try: cursor = cnx.cursor() cursor.execute(query) rows = cursor.fetchall() return rows except: print('Error running query:') print(query) print('-'*80) return None def sql_result_equals(cnx, query, expected): rows = execute_sql_query(cnx, query) result = [set(row._asdict().values()) for row in rows or []] if result != expected and rows is not None: print('Result not as expected for query:') print(query) print('-'*80) return result == expected
# SQL test for prompt **with** few shots print("SQL is OK" if not execute_sql_query(cnx, response_with_few_shots) is None else "SQL is not OK")
SQL is OK
# SQL test for prompt **without** few shots print("SQL is OK" if not execute_sql_query(cnx, response_with_no_few_shots) is None else "SQL is not OK")
error on running query: SELECT TOP 3 "EventId", "EventDate", "LocationCity", "LocationState", "AircraftManufacturer", "AircraftModel" FROM Aviation.Event e JOIN Aviation.Aircraft a ON e.ID = a.Event WHERE e.EventDate >= '2010-01-01' AND e.EventDate < '2011-01-01' -------------------------------------------------------------------------------- SQL is not OK
Define a set of test cases and run them:
tests = [{ "input": "What were the top 3 years with the most recorded events?", "expected": [{128, 2003}, {122, 2007}, {117, 2005}] },{ "input": "How many incidents involving Boeing aircraft.", "expected": [{5}] },{ "input": "How many incidents that resulted in fatalities.", "expected": [{237}] },{ "input": "List event Id and date and, crew number, age and gender for incidents that occurred in 2013.", "expected": [{1, datetime.datetime(2013, 3, 4, 11, 6), '20130305X71252', 59, 'M'}, {1, datetime.datetime(2013, 1, 1, 15, 0), '20130101X94035', 32, 'M'}, {2, datetime.datetime(2013, 1, 1, 15, 0), '20130101X94035', 35, 'M'}, {1, datetime.datetime(2013, 1, 12, 15, 0), '20130113X42535', 25, 'M'}, {2, datetime.datetime(2013, 1, 12, 15, 0), '20130113X42535', 34, 'M'}, {1, datetime.datetime(2013, 2, 1, 15, 0), '20130203X53401', 29, 'M'}, {1, datetime.datetime(2013, 2, 15, 15, 0), '20130218X70747', 27, 'M'}, {1, datetime.datetime(2013, 3, 2, 15, 0), '20130303X21011', 49, 'M'}, {1, datetime.datetime(2013, 3, 23, 13, 52), '20130326X85150', 'M', None}] },{ "input": "Find the total number of incidents that occurred in the United States.", "expected": [{1178}] },{ "input": "List all incidents latitude and longitude coordinates with more than 5 injuries that occurred in 2010.", "expected": [{-78.76833333333333, 43.25277777777778}] },{ "input": "Find all incidents in 2010 informing the Event Id and date, location city and state, aircraft manufacturer and model.", "expected": [ {datetime.datetime(2010, 5, 20, 13, 43), '20100520X60222', 'CIRRUS DESIGN CORP', 'Farmingdale', 'New York', 'SR22'}, {datetime.datetime(2010, 4, 11, 15, 0), '20100411X73253', 'CZECH AIRCRAFT WORKS SPOL SRO', 'Millbrook', 'New York', 'SPORTCRUISER'}, {'108', datetime.datetime(2010, 1, 9, 12, 55), '20100111X41106', 'Bayport', 'New York', 'STINSON'}, {datetime.datetime(2010, 8, 1, 14, 20), '20100801X85218', 'A185F', 'CESSNA', 'New York', 'Newfane'} ] }]
Run the tests and calculate the accuracy:
def execute_tests(cnx, context, prompt, use_few_shots, tables_vector_store, table_df, example_selector, example_prompt): tests_generated_sql = [(x, get_sql_from_text( context, prompt, user_input=x['input'], use_few_shots=use_few_shots, tables_vector_store=tables_vector_store, table_df=table_df, example_selector=example_selector if use_few_shots else None, example_prompt=example_prompt if use_few_shots else None, )) for x in deepcopy(tests)] tests_sql_executions = [(x[0], sql_result_equals(cnx, x[1], x[0]['expected'])) for x in tests_generated_sql] accuracy = sum(1 for i in tests_sql_executions if i[1] == True) / len(tests_sql_executions) print(f'Accuracy: {accuracy}') print('-'*80)
# Accuracy tests for prompts executed **without** few shots use_few_shots = False execute_tests( cnx, context, prompt, use_few_shots, tables_vector_store, table_df, example_selector, example_prompt )
error on running query: SELECT "EventDate", COUNT("EventId") as "TotalEvents" FROM Aviation.Event GROUP BY "EventDate" ORDER BY "TotalEvents" DESC TOP 3; -------------------------------------------------------------------------------- error on running query: SELECT "EventId", "EventDate", "C"."CrewNumber", "C"."Age", "C"."Sex" FROM "Aviation.Event" AS "E" JOIN "Aviation.Crew" AS "C" ON "E"."ID" = "C"."EventId" WHERE "E"."EventDate" >= '2013-01-01' AND "E"."EventDate" < '2014-01-01' -------------------------------------------------------------------------------- result not expected for query: SELECT TOP 3 "e"."EventId", "e"."EventDate", "e"."LocationCity", "e"."LocationState", "a"."AircraftManufacturer", "a"."AircraftModel" FROM "Aviation"."Event" AS "e" JOIN "Aviation"."Aircraft" AS "a" ON "e"."ID" = "a"."Event" WHERE "e"."EventDate" >= '2010-01-01' AND "e"."EventDate" < '2011-01-01' -------------------------------------------------------------------------------- accuracy: 0.5714285714285714 --------------------------------------------------------------------------------
# Accuracy tests for prompts executed **with** few shots use_few_shots = True execute_tests( cnx, context, prompt, use_few_shots, tables_vector_store, table_df, example_selector, example_prompt )
error on running query: SELECT e.EventId, e.EventDate, e.LocationCity, e.LocationState, a.AircraftManufacturer, a.AircraftModel FROM Aviation.Event e JOIN Aviation.Aircraft a ON e.EventId = a.EventId WHERE Year(e.EventDate) = 2010 TOP 3 -------------------------------------------------------------------------------- accuracy: 0.8571428571428571 --------------------------------------------------------------------------------
The accuracy of SQL queries generated with examples (few shots) is approximately 49% higher compared to those generated without examples (85% vs. 57%).
以上是使用 LangChain 向 IRIS SQL 发送文本的详细内容。更多信息请关注PHP中文网其他相关文章!