搜索
首页后端开发Python教程了解您的数据:探索性数据分析 (EDA) 的要点。

Understanding your data: The Essentials of Exploratory Data Analysis (EDA).

收集并存储数据后,需要对其进行分析以获得对其有意义的理解。正是由于这个原因,探索性数据分析(EDA)发挥了作用。顾名思义,我们正在“探索”数据,即获得数据的总体概述。

收集的数据可以是文本、视频或图像,通常以非结构化方式存储。您很少会找到 100% 干净的数据,即没有任何异常情况。此外,数据可能采用各种格式,例如 Excel、CSV(逗号分隔值)、Json、Parquet 等

在数据世界中,EDA 也可能被称为数据操作数据清理。行业从业者强调清理数据以删除“垃圾”的重要性,因为这可能会对结果和预测产生负面影响。结构化数据通常采用表格格式,可以使用多种技术和工具(如 Excel、Power BI、SQL)进行分析,但在本例中我们将重点关注 Python。

使用 Python 进行 EDA
Python 编程语言是 EDA 中最广泛的工具之一,因为它具有多功能性,可以跨多个行业使用,包括金融、教育、医疗保健、采矿、酒店等。
内置库,即 Pandas 和 NumPy 在这方面非常有效,并且可以跨领域工作(无论是使用 Anaconda/Jupyter Notebook、Google Collab 还是 Visual Studio 等 IDE)

以下是执行 EDA 时可执行的常见步骤和代码行:

首先,您将导入操作/分析所需的 python 库:

将 pandas 导入为 pd
将 numpy 导入为 np

其次,加载数据集
df = pd.read_excel('文件路径')

注意:df 是将表格数据转换为数据框的标准函数。

加载后,您可以使用以下代码预览数据:
df.head()

这将显示数据集的前 5 行
或者,您可以简单地运行 df ,它将显示整个数据集的选定几行(顶部和底部)以及其中的所有列。

第三,使用以下方式了解所有数据类型:
df.info()

注意:数据类型包括整数(整数)、浮点数(小数)或对象(定性数据/描述性文字)。

在此步骤中,建议使用以下方式获取数据的汇总统计信息:
df.describe()

这将为您提供平均值、众数、标准差、最大值/最小值和四分位数等统计数据

第四,使用以下方法识别数据集中是否存在空值:
df.isnull()

然后可以检查重复项(重复条目)
df.duplicated()

EDA 的其他关键方面是检查数据集中的各个变量如何相互关联(相关性)及其分布
相关性可以是正的,也可以是负的,范围是-1到1。其代码是:

df.corr()

注:相关性数值接近1表示强正相关,接近-1表示强负相关

分布检查对称不对称数据的情况,以及数据的偏度,它可以是正态、二项式、伯努利或泊松。

总之,探索性数据分析是更好地理解数据的重要过程。它可以实现更好的可视化和模型构建。

以上是了解您的数据:探索性数据分析 (EDA) 的要点。的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python vs. C:内存管理和控制Python vs. C:内存管理和控制Apr 19, 2025 am 12:17 AM

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

科学计算的Python:详细的外观科学计算的Python:详细的外观Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python和C:找到合适的工具Python和C:找到合适的工具Apr 19, 2025 am 12:04 AM

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

数据科学和机器学习的Python数据科学和机器学习的PythonApr 19, 2025 am 12:02 AM

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)