自从我开始编程以来,我主要使用结构化和过程范例,因为我的任务需要更实用和直接的解决方案。在处理数据提取时,我必须转向新的范式才能实现更有组织的代码。
这种必要性的一个例子是在抓取任务期间,当我需要捕获最初是我知道如何处理的类型的特定数据时,但突然间,它要么不存在,要么在捕获过程中以不同的类型出现.
因此,我不得不添加一些 if's 和 try 和 catch 块来检查数据是 int 还是 string ...后来发现没有捕获到任何内容,None等等。使用字典时,我最终在以下情况下保存了一些无趣的“默认数据”:
data.get(values, 0)
好吧,令人困惑的错误消息肯定必须停止出现。
这就是 Python 的动态性。变量可以随时更改其类型,直到您需要更清楚地了解正在使用的类型为止。然后突然出现一堆信息,现在我正在阅读如何处理数据验证,IDE 帮助我处理类型提示和有趣的 pydantic 库。
现在,在数据操作等任务中,使用新范例,我可以拥有显式声明其类型的对象,以及允许验证这些类型的库。如果出现问题,通过查看更好描述的错误信息来调试会更容易。
派丹提克
所以,这是 Pydantic 文档。有更多疑问,欢迎咨询。
基本上,正如我们所知,我们从以下开始:
pip install pydantic
然后,假设我们希望从包含这些电子邮件的源中捕获电子邮件,其中大多数看起来像这样:“xxxx@xxxx.com”。但有时,它可能是这样的:“xxxx@”或“xxxx”。我们对应该捕获的电子邮件格式毫无疑问,因此我们将使用 Pydantic 验证此电子邮件字符串:
from pydantic import BaseModel, EmailStr class Consumer(BaseModel): email: EmailStr account_id: int consumer = Consumer(email="teste@teste", account_id=12345) print(consumer)
请注意,我使用了可选的依赖项“email-validator”,通过 pip install pydantic[email] 安装。正如我们所知,当您运行代码时,错误将是无效的电子邮件格式“teste@teste”:
Traceback (most recent call last): ... consumer = Consumer(email="teste@teste", account_id=12345) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ...: 1 validation error for Consumer email value is not a valid email address: The part after the @-sign is not valid. It should have a period. [type=value_error, input_value='teste@teste', input_type=str]
使用可选依赖项来验证数据很有趣,就像创建我们自己的验证一样,Pydantic 通过 field_validator 允许这样做。因此,我们知道 account_id 必须为正且大于零。如果不同,Pydantic 警告存在异常(值错误)会很有趣。代码将是:
from pydantic import BaseModel, EmailStr, field_validator class Consumer(BaseModel): email: EmailStr account_id: int @field_validator("account_id") def validate_account_id(cls, value): """Custom Field Validation""" if value <pre class="brush:php;toolbar:false">$ python capture_emails.py Traceback (most recent call last): ... consumer = Consumer(email="teste@teste.com", account_id=0) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ...: 1 validation error for Consumer account_id Value error, account_id must be positive: 0 [type=value_error, input_value=0, input_type=int] For further information visit https://errors.pydantic.dev/2.8/v/value_error
现在,使用正确的值运行代码:
from pydantic import BaseModel, EmailStr, field_validator class Consumer(BaseModel): email: EmailStr account_id: int @field_validator("account_id") def validate_account_id(cls, value): """Custom Field Validation""" if value <pre class="brush:php;toolbar:false">$ python capture_emails.py email='teste@teste.com' account_id=12345
对吗?!
我还阅读了一些有关本机“dataclasses”模块的内容,该模块更简单一些,并且与 Pydantic 有一些相似之处。然而,Pydantic 更适合处理需要验证的更复杂的数据模型。 Dataclasses 原生包含在 Python 中,而 Pydantic 还没有——至少现在还没有。
以上是Pydantic • 处理验证和清理数据的详细内容。更多信息请关注PHP中文网其他相关文章!

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

在使用Python的pandas库时,如何在两个结构不同的DataFrame之间进行整列复制是一个常见的问题。假设我们有两个Dat...

本文讨论了诸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和请求等流行的Python库,并详细介绍了它们在科学计算,数据分析,可视化,机器学习,网络开发和H中的用途

本文指导Python开发人员构建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等库详细介绍,强调输入/输出处理,并促进用户友好的设计模式,以提高CLI可用性。

文章讨论了虚拟环境在Python中的作用,重点是管理项目依赖性并避免冲突。它详细介绍了他们在改善项目管理和减少依赖问题方面的创建,激活和利益。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

Atom编辑器mac版下载
最流行的的开源编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

禅工作室 13.0.1
功能强大的PHP集成开发环境