首页  >  文章  >  后端开发  >  CSV 文件处理基准测试:Golang、NestJS、PHP、Python

CSV 文件处理基准测试:Golang、NestJS、PHP、Python

WBOY
WBOY原创
2024-08-12 22:34:02981浏览

介绍

高效处理大型 CSV 文件是许多应用程序中的常见要求,从数据分析到 ETL(提取、转换、加载)过程。在本文中,我想对四种流行编程语言(Golang、带有 NestJS 的 NodeJS、PHP 和 Python)在 MacBook Pro M1 上处理大型 CSV 文件的性能进行基准测试。我的目标是确定哪种语言可以为该任务提供最佳性能。

测试环境

硬件:MacBook Pro M1,256GB SSD,8GB RAM

软件:

  • macOS 索诺玛 14.5
  • PHP 8.3.6
  • Go 语言 1.22.4
  • Node.js 22.0.0 与 NestJS
  • Python 3.12.3

测试数据

我使用了一个名为 sales_data.csv 的合成 CSV 文件,其中包含大约 100 万行,每行都包含交易详细信息,例如 transaction_id、product_id、数量、价格和时间戳。

任务描述

对于每种语言,脚本执行以下任务:

  1. 读取 CSV 文件。
  2. 计算总销售额。
  3. 识别销量最高的产品。

执行

以下是每种语言使用的脚本:

Go 语言脚本:

sales.go

package main

import (
    "encoding/csv"
    "fmt"
    "os"
    "strconv"
    "time"
)

func main() {
    start := time.Now()

    file, err := os.Open("../generate-csv/sales_data.csv")
    if err != nil {
        fmt.Println("Error:", err)
        return
    }
    defer file.Close()

    reader := csv.NewReader(file)
    _, _ = reader.Read() // Skip header

    totalSales := 0.0
    productSales := make(map[string]float64)

    for {
        line, err := reader.Read()
        if err != nil {
            break
        }
        productID := line[1]
        quantity, _ := strconv.Atoi(line[2])
        price, _ := strconv.ParseFloat(line[3], 64)
        total := float64(quantity) * price

        totalSales += total
        productSales[productID] += total
    }

    var topProduct string
    var topSales float64
    for product, sales := range productSales {
        if sales > topSales {
            topProduct = product
            topSales = sales
        }
    }

    elapsed := time.Since(start)
    fmt.Printf("Golang Execution time: %s\n", elapsed)
    fmt.Printf("Total Sales: $%.2f\n", totalSales)
    fmt.Printf("Top Product: %s with sales $%.2f\n", topProduct, topSales)
}

NestJS脚本:

csv.service.ts

import { Injectable } from '@nestjs/common';
import * as fs from 'fs';
import * as fastcsv from 'fast-csv';

// path file CSV
const GLOBAL_CSV_PATH = '../generate-csv/sales_data.csv';

@Injectable()
@Injectable()
export class CsvService {
  async parseCsv(): Promise<{
    nestExecutionTime: number;
    totalSales: number;
    topProductSales: number;
  }> {
    return new Promise((resolve, reject) => {
      const startTime = process.hrtime();

      let totalSales = 0;
      const productSales: { [key: string]: number } = {};

      fs.createReadStream(GLOBAL_CSV_PATH)
        .pipe(fastcsv.parse({ headers: true, delimiter: ',' }))
        .on('data', (row) => {
          const productID = row.product_id;
          const quantity = parseInt(row.quantity, 10);
          const price = parseFloat(row.price);
          const total = quantity * price;
          totalSales += total;
          if (!productSales[productID]) {
            productSales[productID] = 0;
          }
          productSales[productID] += total;
        })
        .on('end', () => {
          const topProduct = Object.keys(productSales).reduce((a, b) =>
            productSales[a] > productSales[b] ? a : b,
          );
          const topProductSales = productSales[topProduct] || 0;
          const endTime = process.hrtime(startTime);
          const nestExecutionTime = endTime[0] + endTime[1] / 1e9;

          console.log(`NestJS Execution time: ${nestExecutionTime} seconds`);
          console.log(`Total Sales: $${totalSales}`);
          console.log(
            `Top Product: ${topProduct} with sales $${topProductSales}`,
          );

          resolve({
            nestExecutionTime,
            totalSales,
            topProductSales,
          });
        })
        .on('error', (error) => reject(error));
    });
  }
}

csv.controller.ts

import { Controller, Get } from '@nestjs/common';
import { CsvService } from './csv.service';

@Controller('csv')
export class CsvController {
  constructor(private readonly csvService: CsvService) {}

  @Get('parse')
  async parseCsv(): Promise<{
    nestExecutionTime: number;
    totalSales: number;
    topProductSales: number;
  }> {
    return this.csvService.parseCsv();
  }
}

PHP脚本

sales.php

<?php
$start_time = microtime(true);

$file = fopen("../generate-csv/sales_data.csv", "r");
$total_sales = 0;
$product_sales = [];

fgetcsv($file); // Skip header
while (($line = fgetcsv($file)) !== false) {
    $product_id = $line[1];
    $quantity = (int)$line[2];
    $price = (float)$line[3];
    $total = $quantity * $price;

    $total_sales += $total;
    if (!isset($product_sales[$product_id])) {
        $product_sales[$product_id] = 0;
    }
    $product_sales[$product_id] += $total;
}
fclose($file);

arsort($product_sales);
$top_product = array_key_first($product_sales);

$end_time = microtime(true);
$execution_time = ($end_time - $start_time);

echo "PHP Execution time: ".$execution_time." seconds\n";
echo "Total Sales: $".$total_sales."\n";
echo "Top Product: ".$top_product." with sales $".$product_sales[$top_product]."\n";

Python脚本

import csv
import time

# Input file name config
input_file = '../generate-csv/sales_data.csv'


def parse_csv(file_path):
    start_time = time.time()

    total_sales = 0
    product_sales = {}

    with open(file_path, mode='r') as file:
        reader = csv.DictReader(file)

        for row in reader:
            product_id = row['product_id']
            quantity = int(row['quantity'])
            price = float(row['price'])
            total = quantity * price
            total_sales += total

            if product_id not in product_sales:
                product_sales[product_id] = 0
            product_sales[product_id] += total

    top_product = max(product_sales, key=product_sales.get)
    execution_time = time.time() - start_time

    return {
        'total_sales': total_sales,
        'top_product': top_product,
        'top_product_sales': product_sales[top_product],
        'execution_time': execution_time,
    }


if __name__ == "__main__":
    result = parse_csv(input_file)
    print(f"Python Execution time: {result['execution_time']:.2f} seconds")
    print(f"Total Sales: ${result['total_sales']:.2f}")
    print(f"Top Product: {result['top_product']} with sales ${
          result['top_product_sales']:.2f}")

结果

以下是我们的基准测试结果:

戈兰

  • 执行时间:466.69975ms
  • 总销售额:$274654985.36
  • 顶级产品:产品 1126,销售额 305922.81 美元

Benchmarking CSV File Processing: Golang vs NestJS vs PHP vs Python

NestJS

  • 执行时间:6.730134208秒
  • 总销售额:$274654985.36000216
  • 顶级产品:1126,销售额 $305922.8099999997

Benchmarking CSV File Processing: Golang vs NestJS vs PHP vs Python

PHP

  • 执行时间:1.5142710208893秒
  • 总销售额:$274654985.36
  • 顶级产品:1126,销售额 305922.81 美元

Benchmarking CSV File Processing: Golang vs NestJS vs PHP vs Python

Python

  • 执行时间:2.56秒
  • 总销售额:$274654985.36
  • 顶级产品:1126,销售额 305922.81 美元

Benchmarking CSV File Processing: Golang vs NestJS vs PHP vs Python

分析

我的基准测试揭示了一些有趣的见解:

执行时间:Golang 在执行时间方面表现最好,PHP8 紧随其后,而 NestJS 完成任务的时间最长。
内存使用:Build NestJS 表现出高效的内存使用,而 Python 表现出更高的内存消耗。
易于实现:Golang 提供了最简单的实现,而 NestJS 需要更多的代码行和复杂性。

结论

根据我的发现,Golang 提供了最佳的性能速度和内存效率,使其成为处理大型数据集的绝佳选择。

完整代码

您可以在我的 Github 存储库上获取完整代码
csv-解析-战斗。

以上是CSV 文件处理基准测试:Golang、NestJS、PHP、Python的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn