高效处理大型 CSV 文件是许多应用程序中的常见要求,从数据分析到 ETL(提取、转换、加载)过程。在本文中,我想对四种流行编程语言(Golang、带有 NestJS 的 NodeJS、PHP 和 Python)在 MacBook Pro M1 上处理大型 CSV 文件的性能进行基准测试。我的目标是确定哪种语言可以为该任务提供最佳性能。
硬件:MacBook Pro M1,256GB SSD,8GB RAM
软件:
我使用了一个名为 sales_data.csv 的合成 CSV 文件,其中包含大约 100 万行,每行都包含交易详细信息,例如 transaction_id、product_id、数量、价格和时间戳。
对于每种语言,脚本执行以下任务:
以下是每种语言使用的脚本:
sales.go
package main import ( "encoding/csv" "fmt" "os" "strconv" "time" ) func main() { start := time.Now() file, err := os.Open("../generate-csv/sales_data.csv") if err != nil { fmt.Println("Error:", err) return } defer file.Close() reader := csv.NewReader(file) _, _ = reader.Read() // Skip header totalSales := 0.0 productSales := make(map[string]float64) for { line, err := reader.Read() if err != nil { break } productID := line[1] quantity, _ := strconv.Atoi(line[2]) price, _ := strconv.ParseFloat(line[3], 64) total := float64(quantity) * price totalSales += total productSales[productID] += total } var topProduct string var topSales float64 for product, sales := range productSales { if sales > topSales { topProduct = product topSales = sales } } elapsed := time.Since(start) fmt.Printf("Golang Execution time: %s\n", elapsed) fmt.Printf("Total Sales: $%.2f\n", totalSales) fmt.Printf("Top Product: %s with sales $%.2f\n", topProduct, topSales) }
csv.service.ts
import { Injectable } from '@nestjs/common'; import * as fs from 'fs'; import * as fastcsv from 'fast-csv'; // path file CSV const GLOBAL_CSV_PATH = '../generate-csv/sales_data.csv'; @Injectable() @Injectable() export class CsvService { async parseCsv(): Promise<{ nestExecutionTime: number; totalSales: number; topProductSales: number; }> { return new Promise((resolve, reject) => { const startTime = process.hrtime(); let totalSales = 0; const productSales: { [key: string]: number } = {}; fs.createReadStream(GLOBAL_CSV_PATH) .pipe(fastcsv.parse({ headers: true, delimiter: ',' })) .on('data', (row) => { const productID = row.product_id; const quantity = parseInt(row.quantity, 10); const price = parseFloat(row.price); const total = quantity * price; totalSales += total; if (!productSales[productID]) { productSales[productID] = 0; } productSales[productID] += total; }) .on('end', () => { const topProduct = Object.keys(productSales).reduce((a, b) => productSales[a] > productSales[b] ? a : b, ); const topProductSales = productSales[topProduct] || 0; const endTime = process.hrtime(startTime); const nestExecutionTime = endTime[0] + endTime[1] / 1e9; console.log(`NestJS Execution time: ${nestExecutionTime} seconds`); console.log(`Total Sales: $${totalSales}`); console.log( `Top Product: ${topProduct} with sales $${topProductSales}`, ); resolve({ nestExecutionTime, totalSales, topProductSales, }); }) .on('error', (error) => reject(error)); }); } }
csv.controller.ts
import { Controller, Get } from '@nestjs/common'; import { CsvService } from './csv.service'; @Controller('csv') export class CsvController { constructor(private readonly csvService: CsvService) {} @Get('parse') async parseCsv(): Promise<{ nestExecutionTime: number; totalSales: number; topProductSales: number; }> { return this.csvService.parseCsv(); } }
sales.php
<?php $start_time = microtime(true); $file = fopen("../generate-csv/sales_data.csv", "r"); $total_sales = 0; $product_sales = []; fgetcsv($file); // Skip header while (($line = fgetcsv($file)) !== false) { $product_id = $line[1]; $quantity = (int)$line[2]; $price = (float)$line[3]; $total = $quantity * $price; $total_sales += $total; if (!isset($product_sales[$product_id])) { $product_sales[$product_id] = 0; } $product_sales[$product_id] += $total; } fclose($file); arsort($product_sales); $top_product = array_key_first($product_sales); $end_time = microtime(true); $execution_time = ($end_time - $start_time); echo "PHP Execution time: ".$execution_time." seconds\n"; echo "Total Sales: $".$total_sales."\n"; echo "Top Product: ".$top_product." with sales $".$product_sales[$top_product]."\n";
import csv import time # Input file name config input_file = '../generate-csv/sales_data.csv' def parse_csv(file_path): start_time = time.time() total_sales = 0 product_sales = {} with open(file_path, mode='r') as file: reader = csv.DictReader(file) for row in reader: product_id = row['product_id'] quantity = int(row['quantity']) price = float(row['price']) total = quantity * price total_sales += total if product_id not in product_sales: product_sales[product_id] = 0 product_sales[product_id] += total top_product = max(product_sales, key=product_sales.get) execution_time = time.time() - start_time return { 'total_sales': total_sales, 'top_product': top_product, 'top_product_sales': product_sales[top_product], 'execution_time': execution_time, } if __name__ == "__main__": result = parse_csv(input_file) print(f"Python Execution time: {result['execution_time']:.2f} seconds") print(f"Total Sales: ${result['total_sales']:.2f}") print(f"Top Product: {result['top_product']} with sales ${ result['top_product_sales']:.2f}")
以下是我们的基准测试结果:
我的基准测试揭示了一些有趣的见解:
执行时间:Golang 在执行时间方面表现最好,PHP8 紧随其后,而 NestJS 完成任务的时间最长。
内存使用:Build NestJS 表现出高效的内存使用,而 Python 表现出更高的内存消耗。
易于实现:Golang 提供了最简单的实现,而 NestJS 需要更多的代码行和复杂性。
根据我的发现,Golang 提供了最佳的性能速度和内存效率,使其成为处理大型数据集的绝佳选择。
您可以在我的 Github 存储库上获取完整代码
csv-解析-战斗。
以上是CSV 文件处理基准测试:Golang、NestJS、PHP、Python的详细内容。更多信息请关注PHP中文网其他相关文章!