用光训练神经网络,清华成果最新登上了 Nature!
无法应用反向传播算法怎么办?
他们提出了一种全前向模式(Fully Forward Mode,FFM)的训练方法,在物理光学系统中直接执行训练过程,克服了传统基于数字计算机模拟的限制。
简单点说,以前需要对物理系统进行详细建模,然后在计算机上模拟这些模型来训练网络。而 FFM 方法省去了建模过程,允许系统直接使用实验数据进行学习和优化。
这也意味着,训练不需要再从后向前检查每一层(反向传播),而是可以直接从前向后更新网络的参数。
打个比方,就像拼图一样,反向传播需要先看到最终图片(输出),然后逆向一块块检查复原;而 FFM 方法更像手中已有部分完成的拼图,只需按照一些光原理(对称互易性)继续填充,而无需回头检查之前的拼图。
这样下来,使用 FFM优势也很明显:
一是减少了对数学模型的依赖,可以避免模型不准确带来的问题;二是节省了时间(同时能耗更低),使用光学系统可以并行处理大量的数据和操作,消除反向传播也减少了整个网络中需要检查和调整的步骤。
论文共同一作是来自清华的薛智威、周天贶,通讯作者是清华的方璐教授、戴琼海院士。此外,清华电子系徐智昊、之江实验室虞绍良也参与了这项研究。
消除反向传播
一句话概括 FFM 原理:
将光学系统映射为参数化的现场神经网络,通过测量输出光场来计算梯度,并使用梯度下降算法更新参数。
简单说就是让光学系统自学,通过观察自己如何处理光线(即测量输出光场)来了解自己的表现,然后利用这些信息来逐步调整自己的设置(参数)。
下图展示了 FFM 在光学系统中的运行机制:
其中 a 为传统设计方法的局限性;b 为光学系统的组成;c 为光学系统到神经网络的映射。
展开来说,一般的光学系统(b),包括自由空间透镜光学和集成光子学,由调制区域(暗绿色)和传播区域(浅绿色)组成。在这些区域中,调制区域的折射率是可调的,而传播区域的折射率是固定的。
而这里的调制和传播区域可以映射到神经网络中的权重和神经元连接。
在神经网络中,这些可调整的部分就像是神经元之间的连接点,可以改变它们的强度(权重)来学习。
利用空间对称互易性原理,数据和误差计算可以共享相同的前向物理传播过程和测量方法。
这有点像镜子里的反射,系统中的每个部分都能以相同的方式响应光的传播和错误反馈。这意味着无论光如何进入系统,系统都能以一致的方式处理它,并根据结果来调整自己。
这样,可以在现场直接计算梯度,用于更新设计区域内的折射率,从而优化系统性能。
通过现场梯度下降方法,光学系统可以逐步调整其参数,直至达到最优状态。
原文将上述全前向模式的梯度下降方法(替代反向传播)用方程最终表示为:
一种光学神经网络训练方法
作为一种光学神经网络训练的方法,FFM 有以下优势:
与理想模型相当的准确率
使用 FFM 可以在自由空间光学神经网络(Optical Neural Network,ONN)上实现有效的自训练过程。
要说明这个结论,研究人员首先用一个单层的ONN 在基准数据集上进行了对象分类训练(a)。
具体来说,他们用了一些手写数字的图片(MNIST 数据集)来训练这个系统,然后将结果进行了可视化(b)。
结果显示,通过 FFM 学习训练的 ONN 在实验光场与理论光场之间相似性极高(SSIM 超过 0.97)。
换句话说,它学习得非常好,几乎能够完美复制给它的示例。
不过研究人员也提醒:
由于系统存在的不完美之处,理论上计算出的光场和梯度无法完全准确地反映实际物理现象。
接下来,研究人员用更复杂的图片(Fashion-MNIST 数据集)来训练系统识别不同的时尚物品。
一开始,当层数从 2 层增加到 8 层,计算机训练网络的平均准确度几乎只有理论准确度的一半。
而通过 FFM 学习方法,系统的网络准确度提升到 92.5%,接近理论值。
这表明了,随着网络层数的增加,传统方法训练的网络性能下降,而 FFM 学习能够维持高精度。
同时,通过将非线性激活纳入 FFM 学习,可以进一步提升 ONN 的性能。在实验中,非线性 FFM 学习能够将分类准确率从 90.4% 提高到 93.0%。
研究进一步证明,通过批量训练非线性 ONN,错误传播过程可以被简化,并且训练时间仅增加 1 到 1.7 倍。
高分辨率的聚焦能力
FFM 在实际应用中也能实现高质量的成像,即使在复杂的散射环境中也能达到接近物理极限的分辨率。
首先,当光波进入散射介质(如雾、烟或生物组织等),聚焦会变得复杂,不过光波在介质中的传播往往保持一定的对称性。
FFM 就利用了这种对称性,通过优化光波的传播路径和相位,以减少散射效应对聚焦的负面影响。
其效果也很显著,图 b 展示了 FFM 与 PSO(粒子群优化)这两种优化方法的对比。
具体来说,实验采用了两种散射介质,一种是随机相位板(Scatterer-I),另一种是透明胶带(Scatterer-II)。
在这两种介质中,FFM 仅经过 25 次设计迭代就实现了收敛(更快找到优化解),收敛损失值分别为 1.84 和 2.07(越低性能越好)。
而 PSO 方法需要至少 400 次设计迭代才能达到收敛,且在最终收敛时的损失值为 2.01 和 2.15。
同时,图 c 展示了 FFM 能够不断自我优化,它设计的焦点从最初的随机分布逐渐演化和收敛到一个紧密的焦点。
在 3.2 mm × 3.2 mm 的设计区域内,研究人员进一步对 FFM 和 PSO 优化的焦点进行了均匀采样,并比较了它们的 FWHM(半峰全宽)和 PSNR(峰值信噪比)。
结果显示,FFM 聚焦精度更高,成像质量更好。
图 e 进一步评估了设计的焦点阵列在扫描位于散射介质后面的分辨率图时的性能。
结果令人惊喜,FFM 设计的焦点尺寸接近 64.5 m 的衍射极限,这是光学成像理论上的最高分辨率标准。
能够并行成像视线之外的物体
既然在散射介质中如此厉害,研究人员又尝试了非视距(NLOS)场景,即物体被隐藏在视线之外的地方。
FFM 利用了从隐藏物体到观察者之间光路的空间对称性,这允许系统通过全光学的方式在现场重建和分析动态隐藏物体。
通过设计输入波前,FFM 能够同时将物体中的所有网格投影到它们的目标位置,实现隐藏物体的并行恢复。
实验中使用了字母形状的隐藏铬靶 "T"、"H" 和 "U",并设置了曝光时间(1 毫秒)和光功率(0.20 mW),以实现对这些动态目标的快速成像。
结果显示,没有 FFM 设计的波前,图像会严重扭曲。而 FFM 设计的波前能够恢复所有三个字母的形状,SSIM(结构相似性指数)达到 1.0,表明与原始图像的高度相似性。
进一步,与人工神经网络(ANN)在光子效率和分类性能方面相比,FFM 显著优于 ANN,尤其是在低光子条件下。
具体而言,在光子数量受限的情况下(如许多反射或高度漫射的表面),FFM 能够自适应地纠正波前畸变,并需要更少的光子来进行准确分类。
在非 Hermitian 系统中自动搜索异常点
FFM 方法不仅适用于自由空间光学系统,还可以扩展到集成光子系统的自我设计。
研究人员使用串联和并联配置的对称光子核心,构建了一个集成神经网络(a)。
实验中,对称核心通过不同水平的注入电流配置了可变光衰减器(VOA),实现了不同的衰减系数,以模拟不同的权重。
在图 c 中,对称核心中编程矩阵值的保真度非常高,时间漂移的标准偏差分别为 0.012%,0.012% 和 0.010%,表明矩阵值非常稳定。
并且,研究人员可视化了每层的误差。对比实验梯度与理论模拟值,其平均偏差为 3.5%。
在大约100 次迭代(epoch)后,网络达到了收敛状态。
实验结果显示,在三种不同的对称比例配置下(1.0、0.75 或 0.5),网络的分类准确度分别为 94.7%、89.2% 和 89.0%。
而使用 FFM 方法的神经网络,得到的分类准确度为 94.2%、89.2% 和 88.7%。
相比之下,如果使用传统的计算机模拟方法来设计网络,实验的分类准确度会低一些,分别为 71.7%、65.8% 和 55.0%。
最后,研究人员还展示了 FFM 可以自我设计非厄米特系统,通过数值模拟,无需物理模型即可实现对特异点的遍历。
非厄米特系统是物理学中的一个概念,它涉及到量子力学和光学等领域中的系统,这些系统不满足厄米特性(Hermitian)条件。
厄米特性与系统的对称性和能量的实数性有关,非厄米特系统则不满足这些条件,它们可能具有一些特殊的物理现象,比如特异点(Exceptional Points),这是系统的动力学行为在某些点上会发生奇异变化的地方。
总结全文,FFM 是一种在物理系统上实现计算密集型训练过程的方法,能够高效并行执行大多数机器学习操作。
更多详细实验设置、数据集准备过程,欢迎查阅原文。
代码:
https://zenodo.org/records/10820584
《Nature》原文:
https://www.nature.com/articles/s41586-024-07687-4
以上是清华光学 AI 登 Nature!物理神经网络,反向传播不需要了的详细内容。更多信息请关注PHP中文网其他相关文章!

近年来,图神经网络(GNN)取得了快速、令人难以置信的进展。图神经网络又称为图深度学习、图表征学习(图表示学习)或几何深度学习,是机器学习特别是深度学习领域增长最快的研究课题。本次分享的题目为《GNN的基础、前沿和应用》,主要介绍由吴凌飞、崔鹏、裴健、赵亮几位学者牵头编撰的综合性书籍《图神经网络基础、前沿与应用》中的大致内容。一、图神经网络的介绍1、为什么要研究图?图是一种描述和建模复杂系统的通用语言。图本身并不复杂,它主要由边和结点构成。我们可以用结点表示任何我们想要建模的物体,可以用边表示两

当前主流的AI芯片主要分为三类,GPU、FPGA、ASIC。GPU、FPGA均是前期较为成熟的芯片架构,属于通用型芯片。ASIC属于为AI特定场景定制的芯片。行业内已经确认CPU不适用于AI计算,但是在AI应用领域也是必不可少。 GPU方案GPU与CPU的架构对比CPU遵循的是冯·诺依曼架构,其核心是存储程序/数据、串行顺序执行。因此CPU的架构中需要大量的空间去放置存储单元(Cache)和控制单元(Control),相比之下计算单元(ALU)只占据了很小的一部分,所以CPU在进行大规模并行计算

在我的世界(Minecraft)中,红石是一种非常重要的物品。它是游戏中的一种独特材料,开关、红石火把和红石块等能对导线或物体提供类似电流的能量。红石电路可以为你建造用于控制或激活其他机械的结构,其本身既可以被设计为用于响应玩家的手动激活,也可以反复输出信号或者响应非玩家引发的变化,如生物移动、物品掉落、植物生长、日夜更替等等。因此,在我的世界中,红石能够控制的机械类别极其多,小到简单机械如自动门、光开关和频闪电源,大到占地巨大的电梯、自动农场、小游戏平台甚至游戏内建的计算机。近日,B站UP主@

当风大到可以把伞吹坏的程度,无人机却稳稳当当,就像这样:御风飞行是空中飞行的一部分,从大的层面来讲,当飞行员驾驶飞机着陆时,风速可能会给他们带来挑战;从小的层面来讲,阵风也会影响无人机的飞行。目前来看,无人机要么在受控条件下飞行,无风;要么由人类使用遥控器操作。无人机被研究者控制在开阔的天空中编队飞行,但这些飞行通常是在理想的条件和环境下进行的。然而,要想让无人机自主执行必要但日常的任务,例如运送包裹,无人机必须能够实时适应风况。为了让无人机在风中飞行时具有更好的机动性,来自加州理工学院的一组工

1 什么是对比学习1.1 对比学习的定义1.2 对比学习的原理1.3 经典对比学习算法系列2 对比学习的应用3 对比学习在转转的实践3.1 CL在推荐召回的实践3.2 CL在转转的未来规划1 什么是对比学习1.1 对比学习的定义对比学习(Contrastive Learning, CL)是近年来 AI 领域的热门研究方向,吸引了众多研究学者的关注,其所属的自监督学习方式,更是在 ICLR 2020 被 Bengio 和 LeCun 等大佬点名称为 AI 的未来,后陆续登陆 NIPS, ACL,

本文由Cristian Bodnar 和Fabrizio Frasca 合著,以 C. Bodnar 、F. Frasca 等人发表于2021 ICML《Weisfeiler and Lehman Go Topological: 信息传递简单网络》和2021 NeurIPS 《Weisfeiler and Lehman Go Cellular: CW 网络》论文为参考。本文仅是通过微分几何学和代数拓扑学的视角讨论图神经网络系列的部分内容。从计算机网络到大型强子对撞机中的粒子相互作用,图可以用来模

AI面部识别领域又开辟新业务了?这次,是鉴别二战时期老照片里的人脸图像。近日,来自谷歌的一名软件工程师Daniel Patt 研发了一项名为N2N(Numbers to Names)的 AI人脸识别技术,它可识别二战前欧洲和大屠杀时期的照片,并将他们与现代的人们联系起来。用AI寻找失散多年的亲人2016年,帕特在参观华沙波兰裔犹太人纪念馆时,萌生了一个想法。这一张张陌生的脸庞,会不会与自己存在血缘的联系?他的祖父母/外祖父母中有三位是来自波兰的大屠杀幸存者,他想帮助祖母找到被纳粹杀害的家人的照

OTO 是业内首个自动化、一站式、用户友好且通用的神经网络训练与结构压缩框架。 在人工智能时代,如何部署和维护神经网络是产品化的关键问题考虑到节省运算成本,同时尽可能小地损失模型性能,压缩神经网络成为了 DNN 产品化的关键之一。DNN 压缩通常来说有三种方式,剪枝,知识蒸馏和量化。剪枝旨在识别并去除冗余结构,给 DNN 瘦身的同时尽可能地保持模型性能,是最为通用且有效的压缩方法。三种方法通常来讲可以相辅相成,共同作用来达到最佳的压缩效果。然而现存的剪枝方法大都只针对特定模型,特定任务,且需要很


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3汉化版
中文版,非常好用

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能