图的广度优先搜索会逐层访问顶点。第一层由起始顶点组成。每个下一个级别都由与前一个级别中的顶点相邻的顶点组成。图的广度优先遍历类似于树遍历中讨论的树的广度优先遍历。通过广度优先遍历树,逐级访问节点。首先访问根,然后访问根的所有子代,然后访问根的孙子,依此类推。类似地,图的广度优先搜索首先访问一个顶点,然后访问它的所有相邻顶点,然后访问与这些顶点相邻的所有顶点,依此类推。为了确保每个顶点仅被访问一次,如果已经访问过该顶点,则会跳过该顶点。
从图中的顶点 v 开始广度优先搜索的算法在下面的代码中描述。
输入:G = (V, E) 和起始顶点 v
输出:一棵以 v
为根的 BFS 树
1 树 bfs(顶点 v) {
2 创建一个空队列,用于存储要访问的顶点;
3 将v添加到队列中;
4 马克 v 访问过;
5
6 while (队列不为空) {
7 将一个顶点(例如 u)从队列中出列;
8 将u添加到遍历顶点列表中;
u 的每个邻居 w
为 9
10 如果 w 尚未被访问过 {
11 将w添加到队列中;
12 将 u 设置为树中 w 的父级;
13 马克访问过;
14 }
15 }
16 }
考虑下图 (a) 中的图表。假设从顶点 0 开始广度优先搜索。首先访问 0,然后访问其所有邻居 1、2 和 3,如下图 (b) 所示。顶点 1 有三个邻居:0、2 和 4。由于 0 和 2 已经被访问过,所以您现在将只访问 4,如下图 (c) 所示。顶点 2 有 3 个邻居:0、1 和 3,它们都已被访问过。顶点 3 有 3 个邻居:0、2 和 4,它们都已被访问过。顶点 4 有两个邻居:1 和 3,它们都已被访问过。至此,搜索结束。
由于每条边和每个顶点仅被访问一次,因此 bfs 方法的时间复杂度为 O(|E| + |V|),其中 | E| 表示边数,|V| 表示顶点数。
bfs(int v) 方法在 Graph 接口中定义,并在 AbstractGraph.java 类中实现(第 197-222 行)。它返回以顶点 v 作为根的 Tree 类的实例。该方法将搜索到的顶点存储在列表searchOrder(第198行)中,每个顶点的父级存储在数组parent(第199行)中,使用链表作为队列(第198行) 203–204),并使用 isVisited 数组来指示顶点是否已被访问(第 207 行)。搜索从顶点 v 开始。 v 被添加到第 206 行的队列中,并被标记为已访问(第 207 行)。该方法现在检查队列中的每个顶点 u(第 210 行)并将其添加到 searchOrder(第 211 行)。该方法将 u 的每个未访问邻居 e.v 添加到队列(第 214 行),将其父级设置为 u (第 215 行),并将其标记为已访问(第 216 行)。
下面的代码给出了一个测试程序,显示从芝加哥开始的上图中图表的 BFS。
public class TestBFS { public static void main(String[] args) { String[] vertices = {"Seattle", "San Francisco", "Los Angeles", "Denver", "Kansas City", "Chicago", "Boston", "New York", "Atlanta", "Miami", "Dallas", "Houston"}; int[][] edges = { {0, 1}, {0, 3}, {0, 5}, {1, 0}, {1, 2}, {1, 3}, {2, 1}, {2, 3}, {2, 4}, {2, 10}, {3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5}, {4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10}, {5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7}, {6, 5}, {6, 7}, {7, 4}, {7, 5}, {7, 6}, {7, 8}, {8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11}, {9, 8}, {9, 11}, {10, 2}, {10, 4}, {10, 8}, {10, 11}, {11, 8}, {11, 9}, {11, 10} }; Graph<String> graph = new UnweightedGraph<>(vertices, edges); AbstractGraph<String>.Tree bfs = graph.bfs(graph.getIndex("Chicago")); java.util.List<Integer> searchOrders = bfs.getSearchOrder(); System.out.println(bfs.getNumberOfVerticesFound() + " vertices are searched in this BFS order:"); for(int i = 0; i < searchOrders.size(); i++) System.out.print(graph.getVertex(searchOrders.get(i)) + " "); System.out.println(); for(int i = 0; i < searchOrders.size(); i++) if(bfs.getParent(i) != -1) System.out.println("parent of " + graph.getVertex(i) + " is " + graph.getVertex(bfs.getParent(i))); } }
按以下顺序搜索 12 个顶点:
芝加哥 西雅图 丹佛 堪萨斯城 波士顿 纽约
旧金山 洛杉矶 亚特兰大 达拉斯 迈阿密 休斯顿
西雅图的父级是芝加哥
旧金山的父级是西雅图
洛杉矶的父级是丹佛
丹佛的父级是芝加哥
堪萨斯城的母校是芝加哥
波士顿的父母是芝加哥
纽约的父母是芝加哥
亚特兰大的母公司是堪萨斯城
迈阿密的父母是亚特兰大
达拉斯的父母是堪萨斯城
休斯顿的父母是亚特兰大
DFS 解决的许多问题也可以使用 BFS 解决。具体来说,BFS可以用来解决以下问题:
以上是广度优先搜索 (BFS)的详细内容。更多信息请关注PHP中文网其他相关文章!