搜索
首页科技周边人工智能Karpathy观点惹争议:RLHF不是真正的强化学习,谷歌、Meta下场反对

RLHF 与 RL 到底能不能归属为一类,看来大家还是有不一样的看法。AI 大牛 Karpathy 又来科普人工智能概念了。昨日,他发推表示,「基于人类反馈的强化学习(RLHF)只是勉强算得上是强化学习(RL)。」

Karpathy观点惹争议:RLHF不是真正的强化学习,谷歌、Meta下场反对

Karpathy 的全文解释如下:
RLHF 是训练大语言模型(LLM)的第三个(也是最后一个)主要阶段,前两个阶段分别是预训练和监督微调(SFT)。我认为 RLHF 只是勉强算得上 RL,它没有得到广泛的认可。RL 很强大,但 RLHF 却不然。
让我们看看 AlphaGo 的例子,它是使用真正的 RL 训练的。计算机玩围棋(Go)游戏,并在实现奖励函数最大化的回合(赢得比赛)中训练,最终超越了最厉害的人类棋手。AlphaGo 没有使用 RLHF 进行训练,如果它用了,效果就不会那么好。
用 RLHF 训练 AlphaGo 会是什么样子呢?首先,你要给人类标注员两个围棋棋盘的状态,然后问他们更喜欢哪一种:

Karpathy观点惹争议:RLHF不是真正的强化学习,谷歌、Meta下场反对


然后你会收集到 10 万个类似的比较,并训练一个「奖励模型」(RM)神经网络来模拟人类对棋盘状态的氛围检查(vibe check)。你要训练它同意人类判断的平均水平。一旦我们有了奖励模型氛围检查,你就可以针对此运行 RL,学习如何下出带来良好氛围的棋步。显然,这不会在围棋中产生任何太有趣的结果。
这主要有以下两个根本的、独立的原因:
1) 氛围可能会产生误导,这不是实际奖励(赢得比赛)。这是一个糟糕的智能体目标。更糟糕的是,2) 你会发现你的 RL 优化偏离了轨道,因为它很快发现棋盘状态与奖励模型相反。请记住,奖励模型是一个庞大的神经网络,使用数十亿参数来模拟氛围。有些棋盘状态超出了自身训练数据的分布范围,实际上并不是良好状态,但却从奖励模型中获得了非常高的奖励。
出于同样的原因,我有时感到惊讶的一点是 RLHF 工作竟然适用于 LLM。我们为 LLM 训练的奖励模型只是以完全相同的方式进行氛围检查,它会对人类评分者在统计学上看起来喜欢的助手响应给出高分。这不是正确解决问题的实际目标,而是人类认为好的智能体目标。
其次,你甚至无法长时间地运行 RLHF,因为你的模型很快学会以游戏奖励模型的方式来做出响应。这些预测看起来真的非常奇怪,你会看到你的 LLM 助手开始对很多 prompt 做出无意义的响应,比如「The the the the the the」。这在你看来是荒谬的,但随后你查看奖励模型氛围检查,却发现出于某种原因,奖励模型会认为这些看起来很棒。
你的 LLM 发现了一个对抗性示例,它超出了奖励模型训练数据的范围,处于未定义的范围。你可以通过反复讲这些特定示例添加到训练集来缓解这一情况,但下次仍会找到其他对抗性示例。你甚至无法运行 RLHF 进行很多优化步骤。你执行了几百或几千步之后必须调用它,因为你的优化将开始与奖励模型博弈。这并不是 AlphaGo 那样的 RL。
不过,RLHF 是构建 LLM 助手的一个非常有用的步骤。我认为这有几个微妙的原因,其中我最喜欢的一点是通过 RLHF,LLM 助手会从生成器 - 判别器的 gap 中受益。也就是说,对于很多问题类型,人类标注员从几个候选答案中选出最佳答案要比从头写出理想答案容易得多。一个很好的例子是像「生成一首回形针诗」这样的 prompt。一个普通的人类标注员很难从头写出一首好诗来作为监督微调示例,但可以在给定几个候选答案(诗)的情况下选出一首较好的。因此 RLHF 是一种从人类监督的「容易度」差距中获益的方式。
还有一些其他原因,比如 RLHF 有助于缓解幻觉。如果奖励模型是一个足够强大的模型,能够在训练期间发现 LLM 编造的东西,则可以学会用低奖励来惩罚这种行为,教会模型在不确定时避免冒险获取事实性知识。但令人满意的幻觉缓解和处理是另外的事情,这里不做延伸。总之,RLHF 确实有用,但它不是 RL。
到目前为止,还没有一个针对 LLM 的生产级 RL 在开放域得到令人信服的实现和大规模展示。直观地说,这是因为在开放式问题解决任务中获得实际奖励(即赢得比赛)非常困难。在围棋这类封闭、类博弈的环境中,一切都很有趣。其中动态受到限制,奖励函数评估成本很低,不可能进行博弈。
但是,你如何为总结一篇文章提供客观的奖励?或者回答关于某个 pip 安装的模棱两可的问题?或者讲个笑话?或者将一些 Java 代码重写为 Python?实现这些在原则上并非不可能, 但也非易事,需要一些创造性思维。无论谁能令人信服地解决这个问题,都将能够运行真正的 RL,使得 AlphaGo 在围棋中击败了人类。有了 RL,LLM 在解决开放域问题中才有可能真正击败人类。
Karpathy 的观点得到一些人的附议,并指出 RLHF 与 RL 的更多差异。比如 RLHF 没有进行适当的搜索,主要学习利用预训练轨迹的子集。相比之下,在进行适当的 RL 时,离散动作分布通常会通过在损失函数中添加熵项来增噪。Kaypathy 认为,原则上你可以轻松地为 RLHF 目标添加熵奖励,这在 RL 中也经常这样做。但实际上似乎并不多见。

Karpathy观点惹争议:RLHF不是真正的强化学习,谷歌、Meta下场反对

谷歌研究科学家 Kevin Patrick Murphy 也完全同意 Karpathy 的观点。
  1. 他认为 RLHF 更像是一个具有字符串值操作的上下文「强盗」,其中 prompt 是上下文,所以不能称为完整的 RL。
  2. 此外将日常任务的奖励形式化是困难的部分(他认为或许可以叫做对齐)。

    Karpathy观点惹争议:RLHF不是真正的强化学习,谷歌、Meta下场反对

    不过,另一位谷歌高级研究科学家 Natasha Jaques 认为 Karpathy 的观点是错误的。她认为智能体在与人互动时,给出人类喜欢的答案才是真正的目标。

超出分布范围并不是 RLHF 独有的问题。如果仅仅因为人类反馈比运行无限的围棋模拟更受限,并不意味着这不是一个不值得解决的问题,只会让它成为一个更具挑战性的问题。她希望这成为一个更有影响力的问题,毕竟在 LLM 中减少偏见比在围棋中击败人类更有意义。使用贬义的话术,比如 Karpathy 说奖励模型是一种氛围检查,这是愚蠢的。你可以用同样的论点来反对价值估计。

她觉得 Karpathy 的观点只会阻止人们从事 RLHF 工作,而它是目前唯一可行的减轻 LLM 偏见和幻觉可能造成严重伤害的方法。

Karpathy观点惹争议:RLHF不是真正的强化学习,谷歌、Meta下场反对

                                图源:https://x.com/natashajaques/status/1821631137590259979

Meta 研究员 Pierluca D'Oro 不同意 Karpathy 的主要观点,但同意「RLHF is just barely RL」这一标题。他认为通常用于微调 LLM 的 RLHF 几乎不能算是 RL。

主要观点如下:

  1. 在强化学习中,追求一个「完美的奖励」概念是不现实的,因为大多数复杂任务中,除了目标的重要性,执行方式同样重要。
  2. 尽管在围棋等明确规则的任务中,RL 表现出色。但在涉及复杂行为时,传统 RL 的奖励机制可能无法满足需求。
  3. 他主张研究如何在不完美的奖励模型下提高 RL 的性能,并强调了反馈循环、鲁棒 RL 机制以及人机协作的重要性。

    Karpathy观点惹争议:RLHF不是真正的强化学习,谷歌、Meta下场反对

                                 图源:https://x.com/proceduralia/status/1821560990091128943你赞同谁的观点呢?欢迎在评论区留言。

以上是Karpathy观点惹争议:RLHF不是真正的强化学习,谷歌、Meta下场反对的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
阅读AI索引2025:AI是您的朋友,敌人还是副驾驶?阅读AI索引2025:AI是您的朋友,敌人还是副驾驶?Apr 11, 2025 pm 12:13 PM

斯坦福大学以人为本人工智能研究所发布的《2025年人工智能指数报告》对正在进行的人工智能革命进行了很好的概述。让我们用四个简单的概念来解读它:认知(了解正在发生的事情)、欣赏(看到好处)、接纳(面对挑战)和责任(弄清我们的责任)。 认知:人工智能无处不在,并且发展迅速 我们需要敏锐地意识到人工智能发展和传播的速度有多快。人工智能系统正在不断改进,在数学和复杂思维测试中取得了优异的成绩,而就在一年前,它们还在这些测试中惨败。想象一下,人工智能解决复杂的编码问题或研究生水平的科学问题——自2023年

开始使用Meta Llama 3.2 -Analytics Vidhya开始使用Meta Llama 3.2 -Analytics VidhyaApr 11, 2025 pm 12:04 PM

Meta的Llama 3.2:多模式和移动AI的飞跃 Meta最近公布了Llama 3.2,这是AI的重大进步,具有强大的视觉功能和针对移动设备优化的轻量级文本模型。 以成功为基础

AV字节:Meta' llama 3.2,Google的双子座1.5等AV字节:Meta' llama 3.2,Google的双子座1.5等Apr 11, 2025 pm 12:01 PM

本周的AI景观:进步,道德考虑和监管辩论的旋风。 OpenAI,Google,Meta和Microsoft等主要参与者已经释放了一系列更新,从开创性的新车型到LE的关键转变

与机器交谈的人类成本:聊天机器人真的可以在乎吗?与机器交谈的人类成本:聊天机器人真的可以在乎吗?Apr 11, 2025 pm 12:00 PM

连接的舒适幻想:我们在与AI的关系中真的在蓬勃发展吗? 这个问题挑战了麻省理工学院媒体实验室“用AI(AHA)”研讨会的乐观语气。事件展示了加油

了解Python的Scipy图书馆了解Python的Scipy图书馆Apr 11, 2025 am 11:57 AM

介绍 想象一下,您是科学家或工程师解决复杂问题 - 微分方程,优化挑战或傅立叶分析。 Python的易用性和图形功能很有吸引力,但是这些任务需要强大的工具

3种运行Llama 3.2的方法-Analytics Vidhya3种运行Llama 3.2的方法-Analytics VidhyaApr 11, 2025 am 11:56 AM

Meta's Llama 3.2:多式联运AI强力 Meta的最新多模式模型Llama 3.2代表了AI的重大进步,具有增强的语言理解力,提高的准确性和出色的文本生成能力。 它的能力t

使用dagster自动化数据质量检查使用dagster自动化数据质量检查Apr 11, 2025 am 11:44 AM

数据质量保证:与Dagster自动检查和良好期望 保持高数据质量对于数据驱动的业务至关重要。 随着数据量和源的增加,手动质量控制变得效率低下,容易出现错误。

大型机在人工智能时代有角色吗?大型机在人工智能时代有角色吗?Apr 11, 2025 am 11:42 AM

大型机:AI革命的无名英雄 虽然服务器在通用应用程序上表现出色并处理多个客户端,但大型机是专为关键任务任务而建立的。 这些功能强大的系统经常在Heavil中找到

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境