搜索
首页后端开发C++追求性能第三部分:C Force

The Quest for Performance Part III : C Force

在本系列的前两期中,我们考虑了 Perl 中浮动操作的性能,
Python 和 R 在一个玩具示例中计算函数 cos(sin(sqrt(x))),其中 x 是一个 非常大 50M 双精度浮点数数组。
将算术密集型部分委托给 C 的混合实现是性能最高的实现之一。在本期中,我们将稍微偏离主题,看看玩具示例的纯 C 代码实现的性能。
C 代码将提供有关内存局部性对于性能重要性的进一步见解(默认情况下,C 数组中的元素存储在内存中的顺序地址中,以及数字 API,例如 PDL 或 numpy 与此类容器的接口)相对于容器,
例如Perl 数组不将其值存储在内存中的连续地址中。最后但同样重要的是,C 代码实现将允许我们评估与低级编译器(在本例中为 gcc)的浮点运算相关的标志是否会影响性能。
这一点值得强调:普通人在“管道”安装或构建内联文件时完全依赖于编译器标志的选择。如果一个人不触及这些标志,那么人们就会幸福地不知道他们可能会错过什么,或者他们可能会避免的陷阱。
简陋的 C 文件 makefile 允许人们明确地进行此类性能评估。

下面完整列出了我们玩具示例的 C 代码。该代码相当不言自明,因此除了指出它包含

的四个函数之外,不会花时间解释
  • 昂贵函数的非顺序计算:所有三个浮点操作都使用一个线程在单个循环内进行
  • 昂贵函数的顺序计算:3 个浮点函数计算中的每一个都使用一个线程在单独的循环中进行
  • 非顺序 OpenMP 代码:非顺序代码的线程版本
  • 顺序 OpenMP 代码:顺序代码的线程化

在这种情况下,人们可能希望编译器足够聪明,能够识别平方根映射到汇编中的打包(矢量化)浮点操作,以便可以使用适当的 SIMD 指令对一个函数进行矢量化(请注意,我们做了不使用 OpenMP 代码的 simd 程序)。
也许矢量化带来的加速可以抵消重复访问(或不访问)相同内存位置所造成的性能损失。

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <omp.h>

// simulates a large array of random numbers
double*  simulate_array(int num_of_elements,int seed);
// OMP environment functions
void _set_openmp_schedule_from_env();
void _set_num_threads_from_env();



// functions to modify C arrays 
void map_c_array(double* array, int len);
void map_c_array_sequential(double* array, int len);
void map_C_array_using_OMP(double* array, int len);
void map_C_array_sequential_using_OMP(double* array, int len);

int main(int argc, char *argv[]) {
    if (argc != 2) {
        printf("Usage: %s <array_size>\n", argv[0]);
        return 1;
    }

    int array_size = atoi(argv[1]);
    // printf the array size
    printf("Array size: %d\n", array_size);
    double *array = simulate_array(array_size, 1234);

    // Set OMP environment
    _set_openmp_schedule_from_env();
    _set_num_threads_from_env();

    // Perform calculations and collect timing data
    double start_time, end_time, elapsed_time;
    // Non-Sequential calculation
    start_time = omp_get_wtime();
    map_c_array(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Non-sequential calculation time: %f seconds\n", elapsed_time);
    free(array);

    // Sequential calculation
    array = simulate_array(array_size, 1234);
    start_time = omp_get_wtime();
    map_c_array_sequential(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Sequential calculation time: %f seconds\n", elapsed_time);
    free(array);

    array = simulate_array(array_size, 1234);
    // Parallel calculation using OMP
    start_time = omp_get_wtime();
    map_C_array_using_OMP(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Parallel calculation using OMP time: %f seconds\n", elapsed_time);
    free(array);

    // Sequential calculation using OMP
    array = simulate_array(array_size, 1234);
    start_time = omp_get_wtime();
    map_C_array_sequential_using_OMP(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Sequential calculation using OMP time: %f seconds\n", elapsed_time);

    free(array);
    return 0;
}



/*
*******************************************************************************
* OMP environment functions
*******************************************************************************
*/
void _set_openmp_schedule_from_env() {
  char *schedule_env = getenv("OMP_SCHEDULE");
  printf("Schedule from env %s\n", getenv("OMP_SCHEDULE"));
  if (schedule_env != NULL) {
    char *kind_str = strtok(schedule_env, ",");
    char *chunk_size_str = strtok(NULL, ",");

    omp_sched_t kind;
    if (strcmp(kind_str, "static") == 0) {
      kind = omp_sched_static;
    } else if (strcmp(kind_str, "dynamic") == 0) {
      kind = omp_sched_dynamic;
    } else if (strcmp(kind_str, "guided") == 0) {
      kind = omp_sched_guided;
    } else {
      kind = omp_sched_auto;
    }
    int chunk_size = atoi(chunk_size_str);
    omp_set_schedule(kind, chunk_size);
  }
}

void _set_num_threads_from_env() {
  char *num = getenv("OMP_NUM_THREADS");
  printf("Number of threads = %s from within C\n", num);
  omp_set_num_threads(atoi(num));
}
/*
*******************************************************************************
* Functions that modify C arrays whose address is passed from Perl in C
*******************************************************************************
*/

double*  simulate_array(int num_of_elements, int seed) {
  srand(seed); // Seed the random number generator
  double *array = (double *)malloc(num_of_elements * sizeof(double));
  for (int i = 0; i 



<p>一个关键问题是使用快速浮动编译器标志(一种以速度换取代码准确性的技巧)是否会影响性能。 <br>
这是没有这个编译器标志的 makefile<br>
</p>

<pre class="brush:php;toolbar:false">CC = gcc
CFLAGS = -O3 -ftree-vectorize  -march=native  -Wall -std=gnu11 -fopenmp -fstrict-aliasing 
LDFLAGS = -fPIE -fopenmp
LIBS =  -lm

SOURCES = inplace_array_mod_with_OpenMP.c
OBJECTS = $(SOURCES:.c=_noffmath_gcc.o)
EXECUTABLE = inplace_array_mod_with_OpenMP_noffmath_gcc

all: $(SOURCES) $(EXECUTABLE)

clean:
    rm -f $(OBJECTS) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)
    $(CC) $(LDFLAGS) $(OBJECTS) $(LIBS) -o $@

%_noffmath_gcc.o : %.c 
    $(CC) $(CFLAGS) -c $



<p>这是带有此标志的:<br>
</p>

<pre class="brush:php;toolbar:false">CC = gcc
CFLAGS = -O3 -ftree-vectorize  -march=native -Wall -std=gnu11 -fopenmp -fstrict-aliasing -ffast-math
LDFLAGS = -fPIE -fopenmp
LIBS =  -lm

SOURCES = inplace_array_mod_with_OpenMP.c
OBJECTS = $(SOURCES:.c=_gcc.o)
EXECUTABLE = inplace_array_mod_with_OpenMP_gcc

all: $(SOURCES) $(EXECUTABLE)

clean:
    rm -f $(OBJECTS) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)
    $(CC) $(LDFLAGS) $(OBJECTS) $(LIBS) -o $@

%_gcc.o : %.c 
    $(CC) $(CFLAGS) -c $



<p>这是运行这两个程序的结果</p>

  • 没有-ffast-math
OMP_SCHEDULE=guided,1 OMP_NUM_THREADS=8 ./inplace_array_mod_with_OpenMP_noffmath_gcc 50000000
Array size: 50000000
Schedule from env guided,1
Number of threads = 8 from within C
Non-sequential calculation time: 1.12 seconds
Sequential calculation time: 0.95 seconds
Parallel calculation using OMP time: 0.17 seconds
Sequential calculation using OMP time: 0.15 seconds
  • 使用 -ffast-math
OMP_SCHEDULE=guided,1 OMP_NUM_THREADS=8 ./inplace_array_mod_with_OpenMP_gcc 50000000
Array size: 50000000
Schedule from env guided,1
Number of threads = 8 from within C
Non-sequential calculation time: 0.27 seconds
Sequential calculation time: 0.28 seconds
Parallel calculation using OMP time: 0.05 seconds
Sequential calculation using OMP time: 0.06 seconds

请注意,可以在 Numba 代码中使用 fastmath,如下所示(默认为 fastmath=False):

@njit(nogil=True,fastmath=True)
def compute_inplace_with_numba(array):
    np.sqrt(array,array)
    np.sin(array,array)
    np.cos(array,array)

值得注意的几点:

  • -ffast-math 显着提高了性能(单线程和多线程代码大约提高了 300%),但它可能会生成错误的结果
  • Fastmath 在 Numba 中也适用,但应避免使用,其原因与在任何追求准确性的应用程序中应避免的原因相同
  • 顺序 C 单线程代码的性能类似于单线程 PDL 和 Numpy
  • 有点令人惊讶的是,当使用正确(非快速)数学时,顺序代码比非顺序代码快大约 20%。
  • 毫不奇怪,多线程代码比单线程代码更快:)
  • 我仍然无法解释 numbas 如何为这个相当简单的函数提供比 C 代码高 50% 的性能。

标题:“性能追求第三部分:C Force”

日付: 2024-07-07

このシリーズの前 2 回の記事では、Perl での浮動演算のパフォーマンスについて検討しました。
関数 cos(sin(sqrt(x))) を計算するおもちゃの例では、Python と R が使用されています。ここで、x は 50M の倍精度浮動小数点数の 非常に大きな 配列です。
算術集中部分を C に委任したハイブリッド実装は、最もパフォーマンスの高い実装の 1 つでした。今回は少し脱線して、おもちゃのサンプルの純粋な C コード実装のパフォーマンスを見ていきます。
C コードは、パフォーマンスに対するメモリの局所性の重要性について、コンテナと比較してさらに洞察を提供します (デフォルトでは、C 配列の要素はメモリ内の連続したアドレスに格納され、PDL やそのようなコンテナとの numpy インターフェイスなどの数値 API) 、
例えばメモリ内の連続したアドレスに値を格納しない Perl 配列。最後に、重要なことですが、C コードの実装により、低レベル コンパイラ (この場合は gcc) の浮動小数点演算に関連するフラグがパフォーマンスに影響を与えるかどうかを評価できるようになります。
この点は強調する価値があります。一般的な人間は、「インストール」を「パイプ」するとき、またはインライン ファイルをビルドするときのコンパイラ フラグの選択に完全に依存しています。これらのフラグに触れなければ、何が欠けているのか、あるいは避けている落とし穴があるのか​​、幸いにも気づかないことになるでしょう。
謙虚な C ファイル makefile を使用すると、このようなパフォーマンス評価を明示的に行うことができます。

おもちゃの例の C コード全体を以下に示します。このコードは一目瞭然なので、

に対する 4 つの関数が含まれていることを指摘する以外は説明に時間を費やすことはありません。
  • 高価な関数の非順次計算: 3 つの浮動小数点演算はすべて、1 つのスレッドを使用して単一のループ内で実行されます
  • 高価な関数の逐次計算: 3 つの浮動小数点関数の評価はそれぞれ、1 つのスレッドを使用して別個のループ内で行われます
  • ノンシーケンシャル OpenMP コード: ノンシーケンシャル コードのスレッド バージョン
  • シーケンシャル OpenMP コード: シーケンシャル コードのスレッド化

この場合、コンパイラーが、平方根がアセンブリ内のパックされた (ベクトル化された) 浮動小数点演算にマップされることを認識するのに十分賢いので、適切な SIMD 命令を使用して 1 つの関数をベクトル化できることを期待するかもしれません (実際に実行したことに注意してください) OpenMP コードには simd プログラムを使用しないでください)。
おそらく、ベクトル化による高速化により、同じメモリ位置に繰り返しアクセスする (またはしない) ことによるパフォーマンスの低下が相殺される可能性があります。

#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <omp.h>

// simulates a large array of random numbers
double*  simulate_array(int num_of_elements,int seed);
// OMP environment functions
void _set_openmp_schedule_from_env();
void _set_num_threads_from_env();



// functions to modify C arrays 
void map_c_array(double* array, int len);
void map_c_array_sequential(double* array, int len);
void map_C_array_using_OMP(double* array, int len);
void map_C_array_sequential_using_OMP(double* array, int len);

int main(int argc, char *argv[]) {
    if (argc != 2) {
        printf("Usage: %s <array_size>\n", argv[0]);
        return 1;
    }

    int array_size = atoi(argv[1]);
    // printf the array size
    printf("Array size: %d\n", array_size);
    double *array = simulate_array(array_size, 1234);

    // Set OMP environment
    _set_openmp_schedule_from_env();
    _set_num_threads_from_env();

    // Perform calculations and collect timing data
    double start_time, end_time, elapsed_time;
    // Non-Sequential calculation
    start_time = omp_get_wtime();
    map_c_array(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Non-sequential calculation time: %f seconds\n", elapsed_time);
    free(array);

    // Sequential calculation
    array = simulate_array(array_size, 1234);
    start_time = omp_get_wtime();
    map_c_array_sequential(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Sequential calculation time: %f seconds\n", elapsed_time);
    free(array);

    array = simulate_array(array_size, 1234);
    // Parallel calculation using OMP
    start_time = omp_get_wtime();
    map_C_array_using_OMP(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Parallel calculation using OMP time: %f seconds\n", elapsed_time);
    free(array);

    // Sequential calculation using OMP
    array = simulate_array(array_size, 1234);
    start_time = omp_get_wtime();
    map_C_array_sequential_using_OMP(array, array_size);
    end_time = omp_get_wtime();
    elapsed_time = end_time - start_time;
    printf("Sequential calculation using OMP time: %f seconds\n", elapsed_time);

    free(array);
    return 0;
}



/*
*******************************************************************************
* OMP environment functions
*******************************************************************************
*/
void _set_openmp_schedule_from_env() {
  char *schedule_env = getenv("OMP_SCHEDULE");
  printf("Schedule from env %s\n", getenv("OMP_SCHEDULE"));
  if (schedule_env != NULL) {
    char *kind_str = strtok(schedule_env, ",");
    char *chunk_size_str = strtok(NULL, ",");

    omp_sched_t kind;
    if (strcmp(kind_str, "static") == 0) {
      kind = omp_sched_static;
    } else if (strcmp(kind_str, "dynamic") == 0) {
      kind = omp_sched_dynamic;
    } else if (strcmp(kind_str, "guided") == 0) {
      kind = omp_sched_guided;
    } else {
      kind = omp_sched_auto;
    }
    int chunk_size = atoi(chunk_size_str);
    omp_set_schedule(kind, chunk_size);
  }
}

void _set_num_threads_from_env() {
  char *num = getenv("OMP_NUM_THREADS");
  printf("Number of threads = %s from within C\n", num);
  omp_set_num_threads(atoi(num));
}
/*
*******************************************************************************
* Functions that modify C arrays whose address is passed from Perl in C
*******************************************************************************
*/

double*  simulate_array(int num_of_elements, int seed) {
  srand(seed); // Seed the random number generator
  double *array = (double *)malloc(num_of_elements * sizeof(double));
  for (int i = 0; i 



<p>重要な問題は、高速フローティング コンパイラ フラグの使用 (コードの精度と速度を引き換えにするトリック) がパフォーマンスに影響を与える可能性があるかどうかです。 <br>
このコンパイラ フラグのないメイクファイルは次のとおりです<br>
</p>

<pre class="brush:php;toolbar:false">CC = gcc
CFLAGS = -O3 -ftree-vectorize  -march=native  -Wall -std=gnu11 -fopenmp -fstrict-aliasing 
LDFLAGS = -fPIE -fopenmp
LIBS =  -lm

SOURCES = inplace_array_mod_with_OpenMP.c
OBJECTS = $(SOURCES:.c=_noffmath_gcc.o)
EXECUTABLE = inplace_array_mod_with_OpenMP_noffmath_gcc

all: $(SOURCES) $(EXECUTABLE)

clean:
    rm -f $(OBJECTS) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)
    $(CC) $(LDFLAGS) $(OBJECTS) $(LIBS) -o $@

%_noffmath_gcc.o : %.c 
    $(CC) $(CFLAGS) -c $



<p>そして、これがこのフラグを持つものです:<br>
</p>

<pre class="brush:php;toolbar:false">CC = gcc
CFLAGS = -O3 -ftree-vectorize  -march=native -Wall -std=gnu11 -fopenmp -fstrict-aliasing -ffast-math
LDFLAGS = -fPIE -fopenmp
LIBS =  -lm

SOURCES = inplace_array_mod_with_OpenMP.c
OBJECTS = $(SOURCES:.c=_gcc.o)
EXECUTABLE = inplace_array_mod_with_OpenMP_gcc

all: $(SOURCES) $(EXECUTABLE)

clean:
    rm -f $(OBJECTS) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)
    $(CC) $(LDFLAGS) $(OBJECTS) $(LIBS) -o $@

%_gcc.o : %.c 
    $(CC) $(CFLAGS) -c $



<p>これら 2 つのプログラムを実行した結果が次のとおりです</p>

  • -ffast-math なし
OMP_SCHEDULE=guided,1 OMP_NUM_THREADS=8 ./inplace_array_mod_with_OpenMP_noffmath_gcc 50000000
Array size: 50000000
Schedule from env guided,1
Number of threads = 8 from within C
Non-sequential calculation time: 1.12 seconds
Sequential calculation time: 0.95 seconds
Parallel calculation using OMP time: 0.17 seconds
Sequential calculation using OMP time: 0.15 seconds
  • -ffast-math を使用する
OMP_SCHEDULE=guided,1 OMP_NUM_THREADS=8 ./inplace_array_mod_with_OpenMP_gcc 50000000
Array size: 50000000
Schedule from env guided,1
Number of threads = 8 from within C
Non-sequential calculation time: 0.27 seconds
Sequential calculation time: 0.28 seconds
Parallel calculation using OMP time: 0.05 seconds
Sequential calculation using OMP time: 0.06 seconds

次のように Numba コードで fastmath を使用できることに注意してください (デフォルトは fastmath=False)。

@njit(nogil=True,fastmath=True)
def compute_inplace_with_numba(array):
    np.sqrt(array,array)
    np.sin(array,array)
    np.cos(array,array)

注目に値するいくつかの点:

  • -ffast-math はパフォーマンスを大幅に向上させます (シングルスレッドコードとマルチスレッドコードの両方で約 300%) が、誤った結果が生成される可能性があります
  • Fastmath は Numba でも動作しますが、正確さを追求するアプリケーションで避けるべきと同じ理由で避けるべきです
  • シーケンシャル C シングル スレッド コードは、シングル スレッド PDL や Numpy と同様のパフォーマンスを提供します
  • 少し驚くべきことに、正しい (高速ではない) 計算を使用すると、シーケンシャル コードは非シーケンシャル コードよりも約 20% 高速になります。
  • 当然のことながら、マルチスレッド コードはシングル スレッド コードより高速です :)
  • numbas が、このかなり単純な関数の C コードよりもどのようにパフォーマンスを 50% 向上させるのか、まだ説明できません。

以上是追求性能第三部分:C Force的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
C中的XML:处理复杂的数据结构C中的XML:处理复杂的数据结构May 02, 2025 am 12:04 AM

在C 中处理XML数据结构可以使用TinyXML或pugixml库。1)使用pugixml库解析和生成XML文件。2)处理复杂的嵌套XML元素,如书籍信息。3)优化XML处理代码,建议使用高效库和流式解析。通过这些步骤,可以高效处理XML数据。

C和性能:它仍然主导C和性能:它仍然主导May 01, 2025 am 12:14 AM

C 在性能优化方面仍然占据主导地位,因为其低级内存管理和高效执行能力使其在游戏开发、金融交易系统和嵌入式系统中不可或缺。具体表现为:1)在游戏开发中,C 的低级内存管理和高效执行能力使得它成为游戏引擎开发的首选语言;2)在金融交易系统中,C 的性能优势确保了极低的延迟和高吞吐量;3)在嵌入式系统中,C 的低级内存管理和高效执行能力使得它在资源有限的环境中非常受欢迎。

C XML框架:为您选择合适的一个C XML框架:为您选择合适的一个Apr 30, 2025 am 12:01 AM

C XML框架的选择应基于项目需求。1)TinyXML适合资源受限环境,2)pugixml适用于高性能需求,3)Xerces-C 支持复杂的XMLSchema验证,选择时需考虑性能、易用性和许可证。

C#vs. C:为您的项目选择正确的语言C#vs. C:为您的项目选择正确的语言Apr 29, 2025 am 12:51 AM

C#适合需要开发效率和类型安全的项目,而C 适合需要高性能和硬件控制的项目。 1)C#提供垃圾回收和LINQ,适用于企业应用和Windows开发。 2)C 以高性能和底层控制着称,广泛用于游戏和系统编程。

c  怎么进行代码优化c 怎么进行代码优化Apr 28, 2025 pm 10:27 PM

C 代码优化可以通过以下策略实现:1.手动管理内存以优化使用;2.编写符合编译器优化规则的代码;3.选择合适的算法和数据结构;4.使用内联函数减少调用开销;5.应用模板元编程在编译时优化;6.避免不必要的拷贝,使用移动语义和引用参数;7.正确使用const帮助编译器优化;8.选择合适的数据结构,如std::vector。

如何理解C  中的volatile关键字?如何理解C 中的volatile关键字?Apr 28, 2025 pm 10:24 PM

C 中的volatile关键字用于告知编译器变量值可能在代码控制之外被改变,因此不能对其进行优化。1)它常用于读取可能被硬件或中断服务程序修改的变量,如传感器状态。2)volatile不能保证多线程安全,应使用互斥锁或原子操作。3)使用volatile可能导致性能slight下降,但确保程序正确性。

怎样在C  中测量线程性能?怎样在C 中测量线程性能?Apr 28, 2025 pm 10:21 PM

在C 中测量线程性能可以使用标准库中的计时工具、性能分析工具和自定义计时器。1.使用库测量执行时间。2.使用gprof进行性能分析,步骤包括编译时添加-pg选项、运行程序生成gmon.out文件、生成性能报告。3.使用Valgrind的Callgrind模块进行更详细的分析,步骤包括运行程序生成callgrind.out文件、使用kcachegrind查看结果。4.自定义计时器可灵活测量特定代码段的执行时间。这些方法帮助全面了解线程性能,并优化代码。

C  中的chrono库如何使用?C 中的chrono库如何使用?Apr 28, 2025 pm 10:18 PM

使用C 中的chrono库可以让你更加精确地控制时间和时间间隔,让我们来探讨一下这个库的魅力所在吧。C 的chrono库是标准库的一部分,它提供了一种现代化的方式来处理时间和时间间隔。对于那些曾经饱受time.h和ctime折磨的程序员来说,chrono无疑是一个福音。它不仅提高了代码的可读性和可维护性,还提供了更高的精度和灵活性。让我们从基础开始,chrono库主要包括以下几个关键组件:std::chrono::system_clock:表示系统时钟,用于获取当前时间。std::chron

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具