通过并行执行实现最佳性能至关重要。 Python 是一种多功能编程语言,提供了多种并发执行工具。最强大且用户友好的模块之一是concurrent.futures,它允许开发人员异步运行调用。在本文中,我们将探讨该模块的功能以及如何利用它来执行各种任务,包括文件操作和 Web 请求。
并发期货概述
concurrent.futures 模块提供了一个名为 Executor 的抽象类,它有助于异步执行调用。虽然不应该直接使用它,但开发人员可以利用它的具体子类,例如 ThreadPoolExecutor 和 ProcessPoolExecutor 来并发执行任务。
主要特点
- 提交方法:提交方法是神奇发生的地方。它安排一个可调用函数异步执行并返回一个 Future 对象。可调用程序使用提供的参数执行,允许开发人员无缝运行后台任务。
with ThreadPoolExecutor(max_workers=1) as executor: future = executor.submit(pow, 323, 1235) print(future.result())
在此示例中,我们使用 ThreadPoolExecutor 在单独的线程中将数字求幂。
- Map 方法:map 方法是另一个很棒的功能,它允许同时跨多个输入可迭代执行函数。它立即收集可迭代对象并异步执行调用。
results = executor.map(load_url, URLS, timeout=2)
当您有要并行运行的任务列表时,此功能特别有用。
实际应用:复制文件
考虑一个需要高效复制多个文件的场景。以下代码片段演示了如何使用 ThreadPoolExecutor 并发复制文件:
import concurrent.futures import shutil files_to_copy = [ ('src2.txt', 'dest2.txt'), ('src3.txt', 'dest3.txt'), ('src4.txt', 'dest4.txt'), ] with concurrent.futures.ThreadPoolExecutor() as executor: futures = [executor.submit(shutil.copy, src, dst) for src, dst in files_to_copy] for future in concurrent.futures.as_completed(futures): print(future.result())
本示例利用shutil.copy函数并行执行文件复制,显着提高大规模文件操作的性能。
并发处理 Web 请求
concurrent.futures 模块的另一个令人兴奋的应用是同时从多个 URL 检索内容。下面是一个使用 ThreadPoolExecutor 获取网页的简单实现:
import concurrent.futures import urllib.request URLS = [ 'http://www.foxnews.com/', 'http://www.cnn.com/', 'http://europe.wsj.com/', 'http://www.bbc.co.uk/', 'http://nonexistant-subdomain.python.org/', ] def load_url(url, timeout): with urllib.request.urlopen(url, timeout=timeout) as conn: return conn.read() with concurrent.futures.ThreadPoolExecutor() as executor: results = executor.map(load_url, URLS, timeout=2) for result in results: print(result)
此代码是快速检索 Web 内容的简单方法,展示了在项目中实现并发执行是多么容易。
结论
concurrent.futures 模块提供了一种在 Python 中异步执行任务的强大方法,简化了在应用程序中实现并行性的过程。通过它的 Executor 类和方法(如提交和映射),开发人员可以有效地管理后台任务,无论它们涉及文件操作、Web 请求还是任何其他 I/O 绑定进程。
通过将这些技术融入您的编程实践中,您将能够创建响应更快、更高效的应用程序,从而增强性能和用户体验。快乐编码!
以上是Python 中的并发 Future:轻松启动并行任务的详细内容。更多信息请关注PHP中文网其他相关文章!

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

Python3.6环境下加载Pickle文件报错:ModuleNotFoundError:Nomodulenamed...

如何解决jieba分词在景区评论分析中的问题?当我们在进行景区评论分析时,往往会使用jieba分词工具来处理文�...

如何使用正则表达式匹配到第一个闭合标签就停止?在处理HTML或其他标记语言时,常常需要使用正则表达式来�...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

Atom编辑器mac版下载
最流行的的开源编辑器

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

SublimeText3 Linux新版
SublimeText3 Linux最新版

SublimeText3汉化版
中文版,非常好用