首页  >  文章  >  科技周边  >  TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习

TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习

WBOY
WBOY原创
2024-07-25 20:52:33445浏览
TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习
AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com

本论文第一作者杜超群是清华大学自动化系 2020 级直博生。导师为黄高副教授。此前于清华大学物理系获理学学士学位。研究兴趣为不同数据分布上的模型泛化和鲁棒性研究,如长尾学习,半监督学习,迁移学习等。在 TPAMI、ICML 等国际一流期刊、会议上发表多篇论文。

个人主页:https://andy-du20.github.io

本文介绍清华大学的一篇关于长尾视觉识别的论文: Probabilistic Contrastive Learning for Long-Tailed Visual Recognition. 该工作已被 TPAMI 2024 录用,代码已开源。

该研究主要关注对比学习在长尾视觉识别任务中的应用,提出了一种新的长尾对比学习方法 ProCo,通过对 contrastive loss 的改进实现了无限数量 contrastive pairs 的对比学习,有效解决了监督对比学习 (supervised contrastive learning)[1] 对 batch (memory bank) size 大小的固有依赖问题。除了长尾视觉分类任务,该方法还在长尾半监督学习、长尾目标检测和平衡数据集上进行了实验,取得了显著的性能提升。

TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习

  • 论文链接: https://arxiv.org/pdf/2403.06726

  • 项目链接: https://github.com/LeapLabTHU/ProCo

研究动机

对比学习在自监督学习中的成功表明了其在学习视觉特征表示方面的有效性。影响对比学习性能的核心因素是 contrastive pairs 的数量,这使得模型能够从更多的负样本中学习,体现在两个最具代表性的方法 SimCLR [2] 和 MoCo [3] 中分别为 batch size 和 memory bank 的大小。然而在长尾视觉识别任务中,由于类别不均衡,增加 contrastive pairs 的数量所带来的增益会产生严重的边际递减效应,这是由于大部分的 contrastive pairs 都是由头部类别的样本构成的,难以覆盖到尾部类别

例如,在长尾 Imagenet 数据集中,若 batch size (memory bank) 大小设为常见的 4096 和 8192,那么每个 batch (memory bank) 中平均分别有 212 个和 89 个类别的样本数量不足一个。

因此,ProCo 方法的核心 idea 是:在长尾数据集上,通过对每类数据的分布进行建模、参数估计并从中采样以构建 contrastive pairs,保证能够覆盖到所有的类别。进一步,当采样数量趋于无穷时,可以从理论上严格推导出 contrastive loss 期望的解析解,从而直接以此作为优化目标,避免了对 contrastive pairs 的低效采样,实现无限数量 contrastive pairs 的对比学习。

然而,实现以上想法主要有以下几个难点:

  • 如何对每类数据的分布进行建模。

  • 如何高效地估计分布的参数,尤其是对于样本数量较少的尾部类别。

  • 如何保证 contrastive loss 的期望的解析解存在且可计算。

事实上,以上问题可以通过一个统一的概率模型来解决,即选择一个简单有效的概率分布对特征分布进行建模,从而可以利用最大似然估计高效地估计分布的参数,并计算期望 contrastive loss 的解析解。

由于对比学习的特征是分布在单位超球面上的,因此一个可行的方案是选择球面上的 von Mises-Fisher (vMF) 分布作为特征的分布(该分布类似于球面上的正态分布)。vMF 分布参数的最大似然估计有近似解析解且仅依赖于特征的一阶矩统计量,因此可以高效地估计分布的参数,并且严格推导出 contrastive loss 的期望,从而实现无限数量 contrastive pairs 的对比学习。

TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习

Rajah 1 Algoritma ProCo menganggarkan pengedaran sampel berdasarkan ciri-ciri kumpulan yang berbeza Dengan mengambil sampel bilangan sampel yang tidak terhad, penyelesaian analitik bagi kerugian kontrastif yang dijangkakan boleh diperolehi, dengan berkesan menghapuskan pergantungan yang wujud pada pembelajaran kontrastif yang diselia. saiz kumpulan (bank memori) saiz .

Butiran kaedah

Berikut akan memperkenalkan kaedah ProCo secara terperinci dari empat aspek: andaian pengedaran, anggaran parameter, objektif pengoptimuman dan analisis teori.

Andaian Agihan

Seperti yang dinyatakan sebelum ini, ciri-ciri dalam pembelajaran kontras adalah terhad kepada hipersfera unit. Oleh itu, boleh diandaikan bahawa taburan yang dipatuhi oleh ciri-ciri ini ialah taburan von Mises-Fisher (vMF), dan fungsi ketumpatan kebarangkaliannya ialah: TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习

di mana z ialah vektor unit ciri p-dimensi, I ialah diubah suai. Fungsi Bessel jenis pertama,

TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习

μ ialah arah min taburan, κ ialah parameter kepekatan, yang mengawal tahap kepekatan taburan Apabila κ lebih besar, tahap pengelompokan sampel berhampiran min adalah lebih tinggi; apabila κ =0, taburan vMF merosot menjadi sfera.

Anggaran parameter

Berdasarkan andaian pengedaran di atas, pengedaran keseluruhan ciri data ialah pengedaran vMF bercampur, di mana setiap kategori sepadan dengan pengedaran vMF.

TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习

di mana parameter TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习 mewakili kebarangkalian terdahulu bagi setiap kategori, sepadan dengan kekerapan kategori y dalam set latihan. Purata vektor TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习 dan parameter terkumpul TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习 taburan ciri dianggarkan mengikut anggaran kemungkinan maksimum.

Dengan mengandaikan bahawa N vektor unit bebas dijadikan sampel daripada taburan vMF kategori y, anggaran kemungkinan maksimum (anggaran) [4] bagi arah min dan parameter kepekatan memenuhi persamaan berikut:

TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习

di mana TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习 ialah sampel min, TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习 ialah panjang modulus bagi min sampel. Di samping itu, untuk menggunakan sampel sejarah, ProCo menggunakan kaedah anggaran dalam talian, yang boleh menganggarkan parameter kategori ekor dengan berkesan. . Oleh itu, kajian ini secara teorinya memanjangkan bilangan sampel kepada infiniti dan dengan tegas memperoleh penyelesaian analisis bagi fungsi kehilangan kontras yang dijangkakan secara langsung sebagai sasaran pengoptimuman.

Dengan memperkenalkan cawangan ciri tambahan (pembelajaran perwakilan berdasarkan matlamat pengoptimuman ini) semasa proses latihan, cawangan ini boleh dilatih bersama-sama dengan cawangan klasifikasi dan tidak akan meningkat kerana hanya cawangan klasifikasi diperlukan semasa inferens Pengiraan tambahan kos. Jumlah wajaran kerugian kedua-dua cabang digunakan sebagai matlamat pengoptimuman akhir, dan α=1 ditetapkan dalam eksperimen Akhirnya, proses keseluruhan algoritma ProCo adalah seperti berikut: Analisis teori

Untuk meneruskan. menganalisis Untuk mengesahkan keberkesanan kaedah ProCo secara teori, para penyelidik menganalisis terikat ralat generalisasi dan terikat risiko yang berlebihan. Untuk memudahkan analisis, diandaikan di sini hanya terdapat dua kategori, iaitu y∈{-1+1}. Analisis menunjukkan bahawa terikat ralat generalisasi dikawal terutamanya oleh bilangan sampel latihan dan varians data Pengedaran. Dapatan ini konsisten dengan Analisis teori kerja berkaitan [6][7] adalah konsisten, memastikan bahawa kehilangan ProCo tidak memperkenalkan faktor tambahan dan tidak meningkatkan terikat ralat generalisasi, yang secara teorinya menjamin keberkesanan kaedah ini. TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习

此外,该方法依赖于关于特征分布和参数估计的某些假设。为了评估这些参数对模型性能的影响,研究者们还分析了 ProCo loss 的超额风险界,其衡量了使用估计参数的期望风险与贝叶斯最优风险之间的偏差,后者是在真实分布参数下的期望风险。

TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习

这表明 ProCo loss 的超额风险主要受参数估计误差的一阶项控制。

实验结果

作为核心 motivation 的验证,研究者们首先与不同对比学习方法在不同 batch size 下的性能进行了比较。Baseline 包括同样基于 SCL 在长尾识别任务上的改进方法 Balanced Contrastive Learning [5](BCL)。具体的实验 setting 遵循 Supervised Contrastive Learning (SCL) 的两阶段训练策略,即首先只用 contrastive loss 进行 representation learning 的训练,然后在 freeze backbone 的情况下训练一个 linear classifier 进行测试。

下图展示了在 CIFAR100-LT (IF100) 数据集上的实验结果,BCL 和 SupCon 的性能明显受限于 batch size,但 ProCo 通过引入每个类别的特征分布,有效消除了 SupCon 对 batch size 的依赖,从而在不同的 batch size 下都取得了最佳性能。

TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习

此外,研究者们还在长尾识别任务,长尾半监督学习,长尾目标检测和平衡数据集上进行了实验。这里主要展示了在大规模长尾数据集 Imagenet-LT 和 iNaturalist2018 上的实验结果。首先在 90 epochs 的训练 schedule 下,相比于同类改进对比学习的方法,ProCo 在两个数据集和两个 backbone 上都有至少 1% 的性能提升。

TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习

下面的结果进一步表明了 ProCo 也能够从更长的训练 schedule 中受益,在 400 epochs schedule 下,ProCo 在 iNaturalist2018 数据集上取得了 SOTA 的性能,并且还验证了其能够与其它非对比学习方法相结合,包括 distillation (NCL) 等方法。

TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习

  1. P. Khosla, et al. “Supervised contrastive learning,” in NeurIPS, 2020. 

  2. Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020. 

  3. He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020. 

  4. S. Sra, “A short note on parameter approximation for von mises-fisher distributions: and a fast implementation of is (x),” Computational Statistics, 2012. 

  5. J. Zhu, et al. “Balanced contrastive learning for long-tailed visual recognition,” in CVPR, 2022. 

  6. W. Jitkrittum, et al. “ELM: Embedding and logit margins for long-tail learning,” arXiv preprint, 2022. 

  7. A. K. Menon, et al. “Long-tail learning via logit adjustment,” in ICLR, 2021.

以上是TPAMI 2024 | ProCo: 无限contrastive pairs的长尾对比学习的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn