欢迎来到 LETSQL 教程系列的第一篇文章!
在这篇博文中,我们脱离了通常的数据管道主题,以 DataFusion 为例演示如何使用 Poetry 创建和发布 Python 包。
Harlequin 是 SQL 数据库的 TUI 客户端,以其对 SQL 数据库的轻量级广泛支持而闻名。它是用于数据探索和分析工作流程的多功能工具。 Harlequin 提供了一个交互式 SQL 编辑器,具有自动完成、语法突出显示和查询历史记录等功能。它还具有可以显示大型结果集的结果查看器。然而,Harlequin 之前没有 DataFusion 适配器。值得庆幸的是,添加一个真的很容易。
在这篇文章中,我们将通过为 DataFusion 构建 Harlequin 适配器来演示这些概念。并且,通过这样做,我们还将介绍 Poetry 的基本功能、项目设置以及在 PyPI 上发布包的步骤。
要充分利用本指南,您应该对虚拟环境、Python 包和模块以及 pip 有基本的了解。
我们的目标是:
最后,您将获得 Poetry 的实践经验并了解现代 Python 包管理。
本文中实现的代码可以在 GitHub 上找到,也可以在 PyPI 中找到。
Harlequin 是一个在终端中运行的 SQL IDE。它提供了传统命令行数据库工具的强大且功能丰富的替代方案,使其适用于数据探索和分析工作流程。
有关 Harlequin 的一些重要事项:
DataFusion 是一种快速、可扩展的查询引擎,用于使用 Apache Arrow 内存格式在 Rust 中构建高质量的以数据为中心的系统。
DataFusion 提供 SQL 和 Dataframe API、卓越的性能、对 CSV、Parquet、JSON 和 Avro 的内置支持、广泛的定制以及出色的社区。
它附带了自己的 CLI,可以在此处找到更多信息。
Poetry 是一款功能丰富的现代工具,可简化 Python 项目的依赖管理和打包,使开发更加确定性和高效。
来自文档:
Poetry 是 Python 中的依赖管理和打包工具。它允许您声明您的项目所依赖的库,并且它将为您管理(安装/更新)它们。
Poetry 提供了一个锁定文件来确保可重复安装,并可以构建您的项目进行分发。
Harlequin 适配器是一个 Python 包,允许 Harlequin 与数据库系统一起使用。
适配器是一个 Python 包,它在 harlequin.adapters 组中声明一个入口点。该入口点应该引用 HarlequinAdapter 抽象基类的子类。
这使得 Harlequin 能够发现已安装的适配器并在运行时实例化选定的适配器
除了 HarlequinAdapter 类之外,包还必须提供 HarlequinConnection 和 HarlequinCursor 的实现。更详细的描述可以在这个
指导。
开发 Harlequin 适配器的第一步是从现有的 harlequin-adapter-template 生成一个新的存储库
GitHub 模板是作为新项目起点的存储库。它们提供预配置的文件、结构和设置,这些文件、结构和设置可以复制到新存储库,从而可以快速设置项目,而无需分叉的开销。
此功能简化了根据既定模式创建一致、结构良好的项目的过程。
harlequin-adapter-template 附带一个诗歌.lock 文件和一个 pyproject.toml 文件,以及一些用于定义所需类的样板代码。
在讨论编码细节之前,让我们先探讨一下包分发所需的基本文件。
pyproject.toml 文件现在是配置 Python 包以进行发布和其他工具的标准。这一 TOML 格式的文件在 PEP 518 和 PEP 621 中引入,将多个配置文件合并为一个。它通过使其更加健壮和标准化来增强依赖管理。
Poetry,利用 pyproject.toml 处理项目的虚拟环境、解决依赖关系并创建包。
模板的pyproject.toml如下:
[tool.poetry] name = "harlequin-myadapter" version = "0.1.0" description = "A Harlequin adapter for 2da0dc96d989c23227dfa4db76fedb27." authors = ["Ted Conbeer 6da378a5ba0e452039972dddc494b9b0"] license = "MIT" readme = "README.md" packages = [ { include = "harlequin_myadapter", from = "src" }, ] [tool.poetry.plugins."harlequin.adapter"] my-adapter = "harlequin_myadapter:MyAdapter" [tool.poetry.dependencies] python = ">=3.8.1,f681e766a553307a093124d04136e013=4.6.0", python = "048f9288185383784908f4a52c33b661 None: self.conn_str = conn_str self.options = options def connect(self) -> DataFusionConnection: conn = DataFusionConnection(self.conn_str, self.options) return conn
The second one is the HarlequinConnection, particularly the methods execute and get_catalog.
#| eval: false #| code-fold: false #| code-summary: implementation of execution of HarlequinConnection def execute(self, query: str) -> HarlequinCursor | None: try: cur = self.conn.sql(query) # type: ignore if str(cur.logical_plan()) == "EmptyRelation": return None except Exception as e: raise HarlequinQueryError( msg=str(e), title="Harlequin encountered an error while executing your query.", ) from e else: if cur is not None: return DataFusionCursor(cur) else: return None
For brevity, we've omitted the implementation of the get_catalog function. You can find the full code in the adapter.py file within our GitHub repository.
Finally, a HarlequinCursor implementation must be provided as well:
#| eval: false #| code-fold: false #| code-summary: implementation of HarlequinCursor class DataFusionCursor(HarlequinCursor): def __init__(self, *args: Any, **kwargs: Any) -> None: self.cur = args[0] self._limit: int | None = None def columns(self) -> list[tuple[str, str]]: return [ (field.name, _mapping.get(field.type, "?")) for field in self.cur.schema() ] def set_limit(self, limit: int) -> DataFusionCursor: self._limit = limit return self def fetchall(self) -> AutoBackendType: try: if self._limit is None: return self.cur.to_arrow_table() else: return self.cur.limit(self._limit).to_arrow_table() except Exception as e: raise HarlequinQueryError( msg=str(e), title="Harlequin encountered an error while executing your query.", ) from e
Your adapter must register an entry point in the harlequin.adapters group using the packaging software you use to build your project.
If you use Poetry, you can define the entry point in your pyproject.toml file:
[tool.poetry.plugins."harlequin.adapter"] datafusion = "harlequin_datafusion:DataFusionAdapter"
An entry point is a mechanism for code to advertise components it provides to be discovered and used by other code.
Notice that registering a plugin with Poetry is equivalent to the following pyproject.toml specification for entry points:
[project.entry-points."harlequin.adapter"] datafusion = "harlequin_datafusion:DataFusionAdapter"
The template provides a set of pre-configured tests, some of which are applicable to DataFusion while others may not be relevant. One test that's pretty cool checks if the plugin can be discovered, which is crucial for ensuring proper integration:
#| eval: false #| code-fold: false if sys.version_info f92766c91ae8e699e6db3bc44a8ef3ea None: PLUGIN_NAME = "datafusion" eps = entry_points(group="harlequin.adapter") assert eps[PLUGIN_NAME] adapter_cls = eps[PLUGIN_NAME].load() assert issubclass(adapter_cls, HarlequinAdapter) assert adapter_cls == DataFusionAdapter
To make sure the tests are passing, run:
poetry run pytest
The run command executes the given command inside the project’s virtualenv.
With the tests passing, we're nearly ready to publish our project. Let's enhance our pyproject.toml file to make our package more discoverable and appealing on PyPI. We'll add key metadata including:
These additions will help potential users find and understand our package more easily.
classifiers = [ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Topic :: Software Development :: User Interfaces", "Topic :: Database :: Database Engines/Servers", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: Implementation :: CPython" ] readme = "README.md" repository = "https://github.com/mesejo/datafusion-adapter"
For reference:
We're now ready to build our library and verify its functionality by installing it in a clean virtual environment. Let's start with the build process:
poetry build
This command will create distribution packages (both source and wheel) in the dist directory.
The wheel file should have a name like harlequin_datafusion-0.1.1-py3-none-any.whl. This follows the standard naming convention:
To test the installation, create a new directory called test_install. Then, set up a fresh virtual environment with the following command:
python -m venv .venv
To activate the virtual environment on MacOS or Linux:
source .venv/bin/activate
After running this command, you should see the name of your virtual environment (.venv) prepended to your command prompt, indicating that the virtual environment is now active.
To install the wheel file we just built, use pip as follows:
pip install /path/to/harlequin_datafusion-0.1.1-py3-none-any.whl
Replace /path/to/harlequin_datafusion-0.1.1-py3-none-any.whl with the actual path to the wheel file you want to install.
If everything works fined, you should see some dependencies installed, and you should be able to do:
harlequin -a datafusion
Congrats! You have built a Python library. Now it is time to share it with the world.
The best practice before publishing to PyPI is to actually publish to the Test Python Package Index (TestPyPI)
To publish a package to TestPyPI using Poetry, follow these steps:
Create an account at TestPyPI if you haven't already.
Generate an API token on your TestPyPI account page.
Register the TestPyPI repository with Poetry by running:
poetry config repositories.test-pypi https://test.pypi.org/legacy/
To publish your package, run:
poetry publish -r testpypi --username __token__ --password <token>
Replace d6fb5a6237ab04b68d3c67881a9080fa with the actual token value you generated in step 2. To verify the publishing process, use the following command:
python -m pip install --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple 232e112a1ffb9f21e3b1b7ffee4c43c2
This command uses two key arguments:
Replace 232e112a1ffb9f21e3b1b7ffee4c43c2 with your specific package name (e.g., harlequin-datafusion if following this post). For additional details, consult the information provided in this post.
To publish to the actual Python Package Index (PyPI) instead:
Create an account at https://pypi.org/ if you haven't already.
Generate an API token on your PyPI account page.
Run:
poetry publish --username __token__ --password <token>
The default repository is PyPI, so there's no need to specify it.
Is worth noting that Poetry only supports the Legacy Upload API when publishing your project.
Manually publishing each time is repetitive and error-prone, so to fix this problem, let us create a GitHub Action to
publish each time we create a release.
Here are the key steps to publish a Python package to PyPI using GitHub Actions and Poetry:
Set up PyPI authentication: You must provide your PyPI credentials (the API token) as GitHub secrets so the GitHub Actions workflow can access them. Name these secrets something like PYPI_TOKEN.
Create a GitHub Actions workflow file: In your project's .github/workflows directory, create a new file like publish.yml with the following content:
name: Build and publish python package on: release: types: [ published ] jobs: publish-package: runs-on: ubuntu-latest permissions: contents: write steps: - uses: actions/checkout@v3 - uses: actions/setup-python@v4 with: python-version: '3.10' - name: Install Poetry uses: snok/install-poetry@v1 - run: poetry config pypi-token.pypi "${{ secrets.PYPI_TOKEN }}" - name: Publish package run: poetry publish --build --username __token__
The key is to leverage GitHub Actions to automate the publishing process and use Poetry to manage your package's dependencies and metadata.
Poetry is a user-friendly Python package management tool that simplifies project setup and publication. Its intuitive command-line interface streamlines environment management and dependency installation. It supports plugin development, integrates with other tools, and emphasizes testing for robust code. With straightforward commands for building and publishing packages, Poetry makes it easier for developers to share their work with the Python community.
At LETSQL, we're committed to contributing to the developer community. We hope this blog post serves as a straightforward guide to developing and publishing Python packages, emphasizing best practices and providing valuable resources.
To subscribe to our newsletter, visit letsql.com.
As we continue to refine the adapter, we would like to provide better autocompletion and direct reading from files (parquet, csv) as in the DataFusion-cli. This requires a tighter integration with the Rust library without going through the Python bindings.
Your thoughts and feedback are invaluable as we navigate this journey. Share your experiences, questions, or suggestions in the comments below or on our community forum. Let's redefine the boundaries of data science and machine learning integration.
Thanks to Dan Lovell and Hussain Sultan for the comments and the thorough review.
以上是如何使用 Poetry 构建新的 Harlequin 适配器的详细内容。更多信息请关注PHP中文网其他相关文章!