编辑 | 紫罗
AI 在简化药物发现方面的应用正在爆炸式增长。从数十亿种候选分子中筛选出可能具有开发新药所需特性的分子。需要考虑的变量太多了,从材料价格到出错的风险,即使科学家使用 AI,权衡合成最佳候选分子的成本也不是一件容易的事。
在此,MIT 研究人员开发了一个定量决策算法框架 SPARROW,来自动识别最佳分子候选物,从而最大限度地降低合成成本,同时最大限度地提高候选物具有所需特性的可能性。该算法还确定了合成这些分子所需的材料和实验步骤。
SPARROW 考虑了一次合成一批分子的成本,因为多个候选分子通常可以从一些相同的化合物中衍生出来。此外,这种统一的方法可以从在线存储库和广泛使用的 AI 工具中获取有关分子设计、性质预测和合成规划的关键信息。
除了帮助制药公司更有效地发现新药外,SPARROW 还可以用于发明新的农用化学品或发现有机电子产品的专用材料等。
相关研究以《An algorithmic framework for synthetic cost-aware decision making in molecular design》为题,于 6 月 19 日发布在《Nature Computational Science》上。
论文链接:https://www.nature.com/articles/s43588-024-00639-y
「化合物的选择是一门艺术,有时它是一门非常成功的艺术。但鉴于我们拥有所有这些模型和预测工具,它们能提供关于分子可能如何表现以及如何合成的信息,我们应该使用这些信息来指导我们做出的决策。」论文通讯作者 、MIT 化学工程系助理教授 Connor Coley 说。
定量决策算法框架 SPARROW
「合成规划和基于奖励的路线优化工作流程」(Synthesis Planning And Rewards-based Route Optimization Workflow,SPARROW),是一种用于驱动设计周期的算法决策框架。
图示:SPARROW 概述及其在分子设计周期中的作用。(来源:论文)
该研究建立在早期的问题公式的基础上,用于同时选择多个分子的合成路线,以及产品和工艺系统设计的集成。与传统的筛选方法不同,SPARROW 使用一个多目标优化标准,平衡成本与效用,从候选分子库中对分子及其假设的合成路线进行优先排序。
SPARROW 生成由候选目标分子和合成路线组成的反应网络。通过解决基于图的优化问题,可以筛选出一组分子和合成路线,以最佳地平衡累积合成成本和效用。在此背景下,效用衡量评估分子属性的价值。
效用的适当衡量标准将因应用和设计的不同阶段而异。它可能包含分子属性预测、这些预测中的不确定性或新数据点改善结构-属性关系的潜力。必须向 SPARROW 提供一个候选库,并提供相应的奖励,以表明与每个候选分子相关的效用。
图示:SPARROW 的问题表述。(来源:论文)
选择一个分子所获得的奖励还取决于所选合成该分子的反应步骤是否成功。如果候选分子合成路线中的某个反应步骤失败,则无法获得任何信息。研究人员通过最大化选择一个候选分子的预期奖励来形式化这一点,该预期奖励可以用其奖励乘以成功合成该分子的概率来表示。
平衡成本和效用,SPARROW 的目标可以形式化为所有选定目标的预期奖励除以使用选定路线合成所有选定目标的成本。
复杂的成本考量
从某种意义上说,科学家是否应该合成和测试某种分子,归结为合成成本与实验价值的问题。然而,确定成本或价值本身就是一个难题。
SPARROW 通过考虑合成分子所涉及的共享中间化合物并将该信息纳入其成本与价值函数来应对这一挑战。
「当你考虑设计一批分子的优化问题时,添加新结构的成本取决于你已经选择的分子。」Coley 说。
该框架还考虑了诸如起始材料的成本、每条合成路线所涉及的反应数量,以及这些反应在第一次尝试时成功的可能性等因素。
要使用 SPARROW,科学家需提供一组他们正在考虑测试的分子化合物,以及他们希望找到的属性定义。
接下来,SPARROW 收集有关分子及其合成途径的信息,然后权衡每个分子的价值与合成一批候选物的成本。它会自动选择符合用户标准的最佳候选子集,并为这些化合物找到最具成本效益的合成路线。
论文一作 Jenna Fromer 说:「它在一步中完成了所有这些优化,因此它可以同时捕捉所有这些相互竞争的目标。」
多功能框架
SPARROW 的独特之处在于它可以整合人类手工设计的分子结构、虚拟目录中存在的分子结构,或生成式 AI 模型创造的从未见过的分子结构。
「我们有各种不同的想法来源。SPARROW 的吸引力之一在于你可以将所有这些想法放在一个公平的竞争环境中。」Coley 补充道。
研究人员通过三个案例研究展示了 SPARROW 协调分子设计周期的能力。这些应用说明了 SPARROW 如何(1)成功平衡信息增益与合成成本,(2)捕捉一批分子合成成本的非加和性,以及(3)扩展至包含数百个分子的候选库。
图示:SPARROW 在 14 个 ASCT2 抑制剂候选库中平衡成本和奖励的能力证明。(来源:论文)
他们发现 SPARROW 有效地捕捉了批量合成的边际成本,并确定了常见的实验步骤和中间化学品。此外,它可以扩展以处理数百种潜在的分子候选物。
「在化学机器学习社区中,有许多模型可以很好地用于逆合成或分子性质预测,但我们实际上如何使用它们?我们的框架旨在发挥这些前期研究的价值。通过创建 SPARROW,我们希望能够指导其他研究人员使用他们自己的成本和效用函数来思考化合物的筛选。」Fromer 说。
未来,研究人员希望向 SPARROW 中融入更多复杂性。例如,他们希望让算法能够考虑到测试一种化合物的价值可能并不总是恒定的。他们还希望在其成本与价值函数中包含更多并行化学元素。
参考内容:https://news.mit.edu/2024/smarter-way-streamline-drug-discovery-0617
以上是自动识别最佳分子,降低合成成本,MIT开发分子设计决策算法框架的详细内容。更多信息请关注PHP中文网其他相关文章!

MakridakisM-Competitions系列(分别称为M4和M5)分别在2018年和2020年举办(M6也在今年举办了)。对于那些不了解的人来说,m系列得比赛可以被认为是时间序列生态系统的一种现有状态的总结,为当前得预测的理论和实践提供了经验和客观的证据。2018年M4的结果表明,纯粹的“ML”方法在很大程度上胜过传统的统计方法,这在当时是出乎意料的。在两年后的M5[1]中,最的高分是仅具有“ML”方法。并且所有前50名基本上都是基于ML的(大部分是树型模型)。这场比赛看到了LightG

在一项最新的研究中,来自UW和Meta的研究者提出了一种新的解码算法,将AlphaGo采用的蒙特卡洛树搜索算法(Monte-CarloTreeSearch,MCTS)应用到经过近端策略优化(ProximalPolicyOptimization,PPO)训练的RLHF语言模型上,大幅提高了模型生成文本的质量。PPO-MCTS算法通过探索与评估若干条候选序列,搜索到更优的解码策略。通过PPO-MCTS生成的文本能更好满足任务要求。论文链接:https://arxiv.org/pdf/2309.150

编辑|X传统意义上,发现所需特性的分子过程一直是由手动实验、化学家的直觉以及对机制和第一原理的理解推动的。随着化学家越来越多地使用自动化设备和预测合成算法,自主研究设备越来越接近实现。近日,来自MIT的研究人员开发了由集成机器学习工具驱动的闭环自主分子发现平台,以加速具有所需特性的分子的设计。无需手动实验即可探索化学空间并利用已知的化学结构。在两个案例研究中,该平台尝试了3000多个反应,其中1000多个产生了预测的反应产物,提出、合成并表征了303种未报道的染料样分子。该研究以《Autonom

昨天,Meta开源专攻代码生成的基础模型CodeLlama,可免费用于研究以及商用目的。CodeLlama系列模型有三个参数版本,参数量分别为7B、13B和34B。并且支持多种编程语言,包括Python、C++、Java、PHP、Typescript(Javascript)、C#和Bash。Meta提供的CodeLlama版本包括:代码Llama,基础代码模型;代码羊-Python,Python微调版本;代码Llama-Instruct,自然语言指令微调版就其效果来说,CodeLlama的不同版

作者|陈旭鹏编辑|ScienceAI由于神经系统的缺陷导致的失语会导致严重的生活障碍,它可能会限制人们的职业和社交生活。近年来,深度学习和脑机接口(BCI)技术的飞速发展为开发能够帮助失语者沟通的神经语音假肢提供了可行性。然而,神经信号的语音解码面临挑战。近日,约旦大学VideoLab和FlinkerLab的研究者开发了一个新型的可微分语音合成器,可以利用一个轻型的卷积神经网络将语音编码为一系列可解释的语音参数(例如音高、响度、共振峰频率等),并通过可微分神经网络将这些参数合成为语音。这个合成器

编辑|紫罗可合成分子的化学空间是非常广阔的。有效地探索这个领域需要依赖计算筛选技术,比如深度学习,以便快速地发现各种有趣的化合物。将分子结构转换为数字表示形式,并开发相应算法生成新的分子结构是进行化学发现的关键。最近,英国格拉斯哥大学的研究团队提出了一种基于电子密度训练的机器学习模型,用于生成主客体binders。这种模型能够以简化分子线性输入规范(SMILES)格式读取数据,准确率高达98%,从而实现对分子在二维空间的全面描述。通过变分自编码器生成主客体系统的电子密度和静电势的三维表示,然后通

一个普通人用一台手机就能制作电影特效的时代已经来了。最近,一个名叫Simulon的3D技术公司发布了一系列特效视频,视频中的3D机器人与环境无缝融合,而且光影效果非常自然。呈现这些效果的APP也叫Simulon,它能让使用者通过手机摄像头的实时拍摄,直接渲染出CGI(计算机生成图像)特效,就跟打开美颜相机拍摄一样。在具体操作中,你要先上传一个3D模型(比如图中的机器人)。Simulon会将这个模型放置到你拍摄的现实世界中,并使用准确的照明、阴影和反射效果来渲染它们。整个过程不需要相机解算、HDR

人类和四足机器人之间简单有效的交互是创造能干的智能助理机器人的途径,其昭示着这样一个未来:技术以超乎我们想象的方式改善我们的生活。对于这样的人类-机器人交互系统,关键是让四足机器人有能力响应自然语言指令。近来大型语言模型(LLM)发展迅速,已经展现出了执行高层规划的潜力。然而,对LLM来说,理解低层指令依然很难,比如关节角度目标或电机扭矩,尤其是对于本身就不稳定、必需高频控制信号的足式机器人。因此,大多数现有工作都会假设已为LLM提供了决定机器人行为的高层API,而这就从根本上限制了系统的表现能


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

Dreamweaver CS6
视觉化网页开发工具

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中