编辑 | 萝卜皮
计算超分辨率方法,包括传统的分析算法和深度学习模型,极大地改进了光学显微镜。其中,有监督深度神经网络表现出了出色的性能,但由于活细胞的高动态性,需要大量的高质量训练数据,而获取这些数据非常费力且不切实际。
在最新的研究中,清华大学和中国科学院的研究人员开发了零样本反卷积网络(Zero-shot deconvolution networks,ZS-DeconvNet),可立即将显微镜图像的分辨率提高超过衍射极限1.5倍以上,同时荧光比普通超分辨率成像条件低10倍,以无监督的方式进行,无需地面实验或额外的数据采集。
研究人员还展示了 ZS-DeconvNet 在多种成像模式上的多功能适用性,包括全内反射荧光显微镜、三维宽视场显微镜、共焦显微镜、双光子显微镜、晶格光片显微镜和多模态结构照明显微镜;它能够够对从有丝分裂单细胞到小鼠和秀丽隐杆线虫的多细胞胚胎生物进行多色、长期、超分辨率 2D/3D 成像。
该研究以「Zero-shot learning enables instant denoising and super-resolution in optical fluorescence microscopy」为题,于 2024 年 5 月 16 日发布在《Nature Communications》。
光学荧光显微镜对于生物研究至关重要,超分辨率技术的进步提高了成像细节,但伴随空间分辨率提升的是其它成像参数的折衷。计算超分辨率方法凭借其能在线提升图像质量、增强现有设备的能力且扩展应用范围,成为研究热点。
这些方法分为基于分析模型的去卷积等技术和基于深度学习的超分辨率(SR)网络两大类。前者受限于参数调优及对复杂成像环境适应性差的问题,后者能通过大数据学习复杂图像转换,却面临获取难度大、高度依赖训练数据质量的挑战。这限制了深度学习超分辨率技术在生物研究日常应用中的普及及。
在这里,清华大学和中国科学院的研究团队提出了一个零样本反卷积深度神经网络框架ZS-DeconvNet,它能够无监督地训练DLSR网络,仅使用一张低分辨率和低信噪比的平面图像或体积图像堆栈,从而实现零样本实现。
因此,与最先进的 DLSR 方法相比,ZS-DeconvNet 可以适应不同的生物成像环境,其中生物过程过于动态、对光过于敏感而无法获取真实的 SR 图像,或者图像获取过程受到未知和非理想因素的影响。
研究人员表示,即使在单个低信噪比输入图像上进行训练,ZS-DeconvNet 也可以将分辨率提高超过衍射极限 1.5 倍以上,并具有高保真度和可量化性,并且无需进行特定于图像的参数调整。
ZS-DeconvNet 适用于多种成像模式,从扫描显微镜到宽场检测显微镜,并在多种样本和显微镜设置中展示了其能力。
图示:将 ZS-DeconvNet 推广到多种成像模式。(来源:论文)
研究人员证明了经过适当训练的 ZS-DeconvNet 可以在毫秒时间尺度上推断出高分辨率图像,实现对多个细胞器相互作用、迁移和有丝分裂的光敏感过程中的细胞骨架和细胞器动力学,以及发育中的线虫和小鼠胚胎的亚细胞结构和动力学的高通量长期 SR 2D/3D 成像。
图示:多模态 SIM 数据中的零样本去噪和分辨率增强。(来源:论文)
此外,为了让生物学研究社区能够广泛使用 ZS-DeconvNet,该团队建立了一个 Fiji 插件工具箱和一个 ZS-DeconvNet 方法的教程主页,用户无须深度学习知识也能轻松使用。
尽管具有广泛适用性和稳健性,ZS-DeconvNet 用户需注意潜在的幻想生成及其局限,如低荧光信号误识别、应用于不同成像模式的图像时性能下降、PSF 匹配不当导致的问题,以及无监督学习下的分辨率提升不如监督学习明显。
未来,通过结合更先进的网络架构、拓展至其他光学超分辨技术、采用领域适应或泛化技术,以及处理空间变化的PSF,ZS-DeconvNet的功能和应用范围将进一步扩大。
论文链接:https://www.nature.com/articles/s41467-024-48575-9
以上是超衍射极限1.5倍,成像条件低10倍,清华、中国科学院用AI方法提高显微镜分辨率的详细内容。更多信息请关注PHP中文网其他相关文章!

Apollo Research的一份新报告显示,先进的AI系统的不受检查的内部部署构成了重大风险。 在大型人工智能公司中缺乏监督,普遍存在,允许潜在的灾难性结果

传统测谎仪已经过时了。依靠腕带连接的指针,打印出受试者生命体征和身体反应的测谎仪,在识破谎言方面并不精确。这就是为什么测谎结果通常不被法庭采纳的原因,尽管它曾导致许多无辜者入狱。 相比之下,人工智能是一个强大的数据引擎,其工作原理是全方位观察。这意味着科学家可以通过多种途径将人工智能应用于寻求真相的应用中。 一种方法是像测谎仪一样分析被审问者的生命体征反应,但采用更详细、更精确的比较分析。 另一种方法是利用语言标记来分析人们实际所说的话,并运用逻辑和推理。 俗话说,一个谎言会滋生另一个谎言,最终

航空航天业是创新的先驱,它利用AI应对其最复杂的挑战。 现代航空的越来越复杂性需要AI的自动化和实时智能功能,以提高安全性,降低操作

机器人技术的飞速发展为我们带来了一个引人入胜的案例研究。 来自Noetix的N2机器人重达40多磅,身高3英尺,据说可以后空翻。Unitree公司推出的G1机器人重量约为N2的两倍,身高约4英尺。比赛中还有许多体型更小的类人机器人参赛,甚至还有一款由风扇驱动前进的机器人。 数据解读 这场半程马拉松吸引了超过12,000名观众,但只有21台类人机器人参赛。尽管政府指出参赛机器人赛前进行了“强化训练”,但并非所有机器人均完成了全程比赛。 冠军——由北京类人机器人创新中心研发的Tiangong Ult

人工智能以目前的形式并不是真正智能的。它擅长模仿和完善现有数据。 我们不是在创造人工智能,而是人工推断 - 处理信息的机器,而人类则

一份报告发现,在谷歌相册Android版7.26版本的代码中隐藏了一个更新的界面,每次查看照片时,都会在屏幕底部显示一行新检测到的面孔缩略图。 新的面部缩略图缺少姓名标签,所以我怀疑您需要单独点击它们才能查看有关每个检测到的人员的更多信息。就目前而言,此功能除了谷歌相册已在您的图像中找到这些人之外,不提供任何其他信息。 此功能尚未上线,因此我们不知道谷歌将如何准确地使用它。谷歌可以使用缩略图来加快查找所选人员的更多照片的速度,或者可能用于其他目的,例如选择要编辑的个人。我们拭目以待。 就目前而言

增强者通过教授模型根据人类反馈进行调整来震撼AI的开发。它将监督的学习基金会与基于奖励的更新融合在一起,使其更安全,更准确,真正地帮助

科学家已经广泛研究了人类和更简单的神经网络(如秀丽隐杆线虫中的神经网络),以了解其功能。 但是,出现了一个关键问题:我们如何使自己的神经网络与新颖的AI一起有效地工作


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

SublimeText3汉化版
中文版,非常好用

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中