Laravel框架学习笔记(二)项目实战之模型(Models),laravelmodels
在开发mvc项目时,models都是第一步。
下面就从建模开始。
1.实体关系图,
由于不知道php有什么好的建模工具,这里我用的vs ado.net实体模型数据建模
下面开始laravel编码,编码之前首先得配置数据库连接,在app/config/database.php文件
'mysql' => array( 'driver' => 'mysql', 'read' => array( 'host' => '127.0.0.1:3306', ), 'write' => array( 'host' => '127.0.0.1:3306' ), 'database' => 'test', 'username' => 'root', 'password' => 'root', 'charset' => 'utf8', 'collation' => 'utf8_unicode_ci', 'prefix' => '', ),
配置好之后,需要用到artisan工具,这是一个php命令工具在laravel目录中
首先需要要通过artisan建立一个迁移 migrate ,这点和asp.net mvc几乎是一模一样
在laravel目录中 shfit+右键打开命令窗口 输入artisan migrate:make create_XXXX会在app/database/migrations文件下生成一个带时间戳前缀的迁移文件
代码:
<?php use Illuminate\Database\Schema\Blueprint; use Illuminate\Database\Migrations\Migration; class CreateTablenameTable extends Migration { /** * Run the migrations. * * @return void */ public function up() { } /** * Reverse the migrations. * * @return void */ public function down() { } }
看到这里有entityframework 迁移经验的基本上发现这是出奇的相似啊。
接下来就是创建我们的实体结构,laravel 的结构生成器可以参考http://v4.golaravel.com/docs/4.1/schema
<?php use Illuminate\Database\Schema\Blueprint; use Illuminate\Database\Migrations\Migration; class CreateTablenameTable extends Migration { /** * Run the migrations. * * @return void */ public function up() { Schema::create('posts', function(Blueprint $table) { $table->increments('id'); $table->unsignedInteger('user_id'); $table->string('title'); $table->string('read_more'); $table->text('content'); $table->unsignedInteger('comment_count'); $table->timestamps(); }); Schema::create('comments', function(Blueprint $table) { $table->increments('id'); $table->unsignedInteger('post_id'); $table->string('commenter'); $table->string('email'); $table->text('comment'); $table->boolean('approved'); $table->timestamps(); }); Schema::table('users', function (Blueprint $table) { $table->create(); $table->increments('id'); $table->string('username'); $table->string('password'); $table->string('email'); $table->string('remember_token', 100)->nullable(); $table->timestamps(); }); } /** * Reverse the migrations. * * @return void */ public function down() { Schema::drop('posts'); Schema::drop('comments'); Schema::drop('users'); } }
继续在上面的命令窗口输入php artisan migrate 将执行迁移
更多迁移相关知识:http://v4.golaravel.com/docs/4.1/migrations
先写到这里明天继续

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

如何在Laravel框架中使用模型事件(ModelEvents)Laravel框架提供了许多强大的功能,其中之一是模型事件(ModelEvents)。模型事件是在Laravel的EloquentORM(对象关系映射)中使用的一种功能,它允许开发人员在模型发生特定动作时执行自定义的代码。在本文中,我们将探讨如何在Laravel框架中使用模型事件,并提供一

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

记事本++7.3.1
好用且免费的代码编辑器

Atom编辑器mac版下载
最流行的的开源编辑器