浅谈大型web系统架构,web系统架构
动态应用,是相对于网站静态内容而言,是指以c/c++、php、Java、perl、.net等服务器端语言开发的网络应用软件,比如论坛、网络相册、交友、BLOG等常见应用。动态应用系统通常与数据库系统、缓存系统、分布式存储系统等密不可分。
大型动态应用系统平台主要是针对于大流量、高并发网站建立的底层系统架构。大型网站的运行需要一个可靠、安全、可扩展、易维护的应用系统平台做为支撑,以保证网站应用的平稳运行。
大型动态应用系统又可分为几个子系统:
1)Web前端系统
2)负载均衡系统
3)数据库集群系统
4)缓存系统
5)分布式存储系统
6)分布式服务器管理系统
7)代码分发系统
Web前端系统
结构图:
为了达到不同应用的服务器共享、避免单点故障、集中管理、统一配置等目的,不以应用划分服务器,而是将所有服务器做统一使用,每台服务器都可以对多个应用提供服务,当某些应用访问量升高时,通过增加服务器节点达到整个服务器集群的性能提高,同时使他应用也会受益。该Web前端系统基于Apache/Lighttpd/Eginx等的虚拟主机平台,提供PHP程序运行环境。服务器对开发人员是透明的,不需要开发人员介入服务器管理
负载均衡系统
负载均衡系统分为硬件和软件两种。硬件负载均衡效率高,但是价格贵,比如F5等。软件负载均衡系统价格较低或者免费,效率较硬件负载均衡系统低,不过对于流量一般或稍大些网站来讲也足够使用,比如lvs, nginx。大多数网站都是硬件、软件负载均衡系统并用。
数据库集群系统
结构图:
由于Web前端采用了负载均衡集群结构提高了服务的有效性和扩展性,因此数据库必须也是高可靠的,才能保证整个服务体系的高可靠性,如何构建一个高可靠的、可以提供大规模并发处理的数据库体系?
我们可以采用如上图所示的方案:
1) 使用 MySQL 数据库,考虑到Web应用的数据库读多写少的特点,我们主要对读数据库做了优化,提供专用的读数据库和写数据库,在应用程序中实现读操作和写操作分别访问不同的数据库。
2) 使用 MySQL Replication 机制实现快速将主库(写库)的数据库复制到从库(读库)。一个主库对应多个从库,主库数据实时同步到从库。饺子机www.yjlmj.com 整理发布
3) 写数据库有多台,每台都可以提供多个应用共同使用,这样可以解决写库的性能瓶颈问题和单点故障问题。
4) 读数据库有多台,通过负载均衡设备实现负载均衡,从而达到读数据库的高性能、高可靠和高可扩展性。
5) 数据库服务器和应用服务器分离。
6) 从数据库使用BigIP做负载均衡。
缓存系统
缓存分为文件缓存、内存缓存、数据库缓存。在大型Web应用中使用最多且效率最高的是内存缓存。最常用的内存缓存工具是Memcached。使用正确的缓存系统可以达到实现以下目标:
1、使用缓存系统可以提高访问效率,提高服务器吞吐能力,改善用户体验。
2、减轻对数据库及存储集服务器的访问压力。
3、Memcached服务器有多台,避免单点故障,提供高可靠性和可扩展性,提高性能。
分布式存储系统
结构图:
Web系统平台中的存储需求有下面两个特点:
1) 存储量很大,经常会达到单台服务器无法提供的规模,比如相册、视频等应用。因此需要专业的大规模存储系统。
2) 负载均衡cluster中的每个节点都有可能访问任何一个数据对象,每个节点对数据的处理也能被其他节点共享,因此这些节点要操作的数据从逻辑上看只能是一个整体,不是各自独立的数据资源。
因此高性能的分布式存储系统对于大型网站应用来说是非常重要的一环。(这个地方需要加入对某个分布式存储系统的简单介绍。)
分布式服务器管理系统
结构图:
随着网站访问流量的不断增加,大多的网络服务都是以负载均衡集群的方式对外提供服务,随之集群规模的扩大,原来基于单机的服务器管理模式已经不能够满足我们的需求,新的需求必须能够集中式的、分组的、批量的、自动化的对服务器进行管理,能够批量化的执行计划任务。
在分布式服务器管理系统软件中有一些比较优秀的软件,其中比较理想的一个是Cfengine。它可以对服务器进行分组,不同的分组可以分别定制系统配置文件、计划任务等配置。它是基于C/S 结构的,所有的服务器配置和管理脚本程序都保存在Cfengine Server上,而被管理的服务器运行着 Cfengine Client 程序,Cfengine Client通过SSL加密的连接定期的向服务器端发送请求以获取最新的配置文件和管理命令、脚本程序、补丁安装等任务。
有了Cfengine这种集中式的服务器管理工具,我们就可以高效的实现大规模的服务器集群管理,被管理服务器和 Cfengine Server 可以分布在任何位置,只要网络可以连通就能实现快速自动化的管理。
代码发布系统
结构图:
随着网站访问流量的不断增加,大多的网络服务都是以负载均衡集群的方式对外提供服务,随之集群规模的扩大,为了满足集群环境下程序代码的批量分发和更新,我们还需要一个程序代码发布系统。
这个发布系统可以帮我们实现下面的目标:
1) 生产环境的服务器以虚拟主机方式提供服务,不需要开发人员介入维护和直接操作,提供发布系统可以实现不需要登陆服务器就能把程序分发到目标服务器。
2) 我们要实现内部开发、内部测试、生产环境测试、生产环境发布的4个开发阶段的管理,发布系统可以介入各个阶段的代码发布。
3) 我们需要实现源代码管理和版本控制,SVN可以实现该需求。
这里面可以使用常用的工具Rsync,通过开发相应的脚本工具实现服务器集群间代码同步分发。

深度学习的概念源于人工神经网络的研究,含有多个隐藏层的多层感知器是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示,以表征数据的类别或特征。它能够发现数据的分布式特征表示。深度学习是机器学习的一种,而机器学习是实现人工智能的必经之路。那么,各种深度学习的系统架构之间有哪些差别呢?1.全连接网络(FCN)完全连接网络(FCN)由一系列完全连接的层组成,每个层中的每个神经元都连接到另一层中的每个神经元。其主要优点是“结构不可知”,即不需要对输入做出特殊的假设。虽然这种结构不可知使得完

前段时间,一条指出谷歌大脑团队论文《AttentionIsAllYouNeed》中Transformer构架图与代码不一致的推文引发了大量的讨论。对于Sebastian的这一发现,有人认为属于无心之过,但同时也会令人感到奇怪。毕竟,考虑到Transformer论文的流行程度,这个不一致问题早就应该被提及1000次。SebastianRaschka在回答网友评论时说,「最最原始」的代码确实与架构图一致,但2017年提交的代码版本进行了修改,但同时没有更新架构图。这也是造成「不一致」讨论的根本原因。

面向视觉任务(如图像分类)的深度学习模型,通常用来自单一视觉域(如自然图像或计算机生成的图像)的数据进行端到端的训练。一般情况下,一个为多个领域完成视觉任务的应用程序需要为每个单独的领域建立多个模型,分别独立训练,不同领域之间不共享数据,在推理时,每个模型将处理特定领域的输入数据。即使是面向不同领域,这些模型之间的早期层的有些特征都是相似的,所以,对这些模型进行联合训练的效率更高。这能减少延迟和功耗,降低存储每个模型参数的内存成本,这种方法被称为多领域学习(MDL)。此外,MDL模型也可以优于单

这是一个AI赋能的时代,而机器学习则是实现AI的一种重要技术手段。那么,是否存在一个通用的通用的机器学习系统架构呢?在老码农的认知范围内,Anything is nothing,对系统架构而言尤其如此。但是,如果适用于大多数机器学习驱动的系统或用例,构建一个可扩展的、可靠的机器学习系统架构还是可能的。从机器学习生命周期的角度来看,这个所谓的通用架构涵盖了关键的机器学习阶段,从开发机器学习模型,到部署训练系统和服务系统到生产环境。我们可以尝试从10个要素的维度来描述这样的一个机器学习系统架构。1.

对于下一代集中式电子电器架构而言,采用central+zonal 中央计算单元与区域控制器布局已经成为各主机厂或者tier1玩家的必争选项,关于中央计算单元的架构方式,有三种方式:分离SOC、硬件隔离、软件虚拟化。集中式中央计算单元将整合自动驾驶,智能座舱和车辆控制三大域的核心业务功能,标准化的区域控制器主要有三个职责:电力分配、数据服务、区域网关。因此,中央计算单元将会集成一个高吞吐量的以太网交换机。随着整车集成化的程度越来越高,越来越多ECU的功能将会慢慢的被吸收到区域控制器当中。而平台化

人工智能(AI)已经改变了许多行业的游戏规则,使企业能够提高效率、决策制定和客户体验。随着人工智能的不断发展和变得越来越复杂,企业投资于合适的基础设施来支持其开发和部署至关重要。该基础设施的一个关键方面是IT和数据科学团队之间的协作,因为两者在确保人工智能计划的成功方面都发挥着关键作用。人工智能的快速发展导致对计算能力、存储和网络能力的需求不断增加。这种需求给传统IT基础架构带来了压力,而传统IT基础架构并非旨在处理AI所需的复杂和资源密集型工作负载。因此,企业现在正在寻求构建能够支持AI工作负

eslint 使用eslint的生态链来规范开发者对js/ts基本语法的规范。防止团队的成员乱写. 这里主要使用到的eslint的包有以下几个: 使用的以下语句来按照依赖: 接下来需要对eslint的

本文给大家介绍如何通过修改Nginx源码实现基于端口号的 Nginx worker进程隔离方案。看看到底怎么修改Nginx源码,还有Nginx事件循环、Nginx 进程模型、fork资源共享相关的知识。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3汉化版
中文版,非常好用

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能