搜索
首页后端开发Python教程Python标准库之随机数 (math包、random包)介绍

我们已经在Python运算中看到Python最基本的数学运算功能。此外,math包补充了更多的函数。当然,如果想要更加高级的数学功能,可以考虑选择标准库之外的numpy和scipy项目,它们不但支持数组和矩阵运算,还有丰富的数学和物理方程可供使用。

此外,random包可以用来生成随机数。随机数不仅可以用于数学用途,还经常被嵌入到算法中,用以提高算法效率,并提高程序的安全性。

math包

math包主要处理数学相关的运算。math包定义了两个常数:

复制代码 代码如下:

math.e   # 自然常数e
math.pi  # 圆周率pi

此外,math包还有各种运算函数 (下面函数的功能可以参考数学手册):

复制代码 代码如下:

math.ceil(x)       # 对x向上取整,比如x=1.2,返回2
math.floor(x)      # 对x向下取整,比如x=1.2,返回1
math.pow(x,y)      # 指数运算,得到x的y次方
math.log(x)        # 对数,默认基底为e。可以使用base参数,来改变对数的基地。比如math.log(100,base=10)
math.sqrt(x)       # 平方根

三角函数: math.sin(x), math.cos(x), math.tan(x), math.asin(x), math.acos(x), math.atan(x)

这些函数都接收一个弧度(radian)为单位的x作为参数。

角度和弧度互换: math.degrees(x), math.radians(x)

双曲函数: math.sinh(x), math.cosh(x), math.tanh(x), math.asinh(x), math.acosh(x), math.atanh(x)

特殊函数: math.erf(x), math.gamma(x)

random包

如果你已经了解伪随机数(psudo-random number)的原理,那么你可以使用如下:

复制代码 代码如下:

random.seed(x)

来改变随机数生成器的种子seed。如果你不了解其原理,你不必特别去设定seed,Python会帮你选择seed。

1) 随机挑选和排序

random.choice(seq)   # 从序列的元素中随机挑选一个元素,比如random.choice(range(10)),从0到9中随机挑选一个整数。
random.sample(seq,k) # 从序列中随机挑选k个元素
random.shuffle(seq)  # 将序列的所有元素随机排序

2)随机生成实数

下面生成的实数符合均匀分布(uniform distribution),意味着某个范围内的每个数字出现的概率相等:

复制代码 代码如下:

random.random()          # 随机生成下一个实数,它在[0,1)范围内。
random.uniform(a,b)      # 随机生成下一个实数,它在[a,b]范围内。

下面生成的实数符合其它的分布 (你可以参考一些统计方面的书籍来了解这些分布):

复制代码 代码如下:

random.gauss(mu,sigma)    # 随机生成符合高斯分布的随机数,mu,sigma为高斯分布的两个参数。
random.expovariate(lambd) # 随机生成符合指数分布的随机数,lambd为指数分布的参数。

此外还有对数分布,正态分布,Pareto分布,Weibull分布,可参考下面链接:

http://docs.python.org/library/random.html

假设我们有一群人参加舞蹈比赛,为了公平起见,我们要随机排列他们的出场顺序。我们下面利用random包实现:

复制代码 代码如下:

import random
all_people = ['Tom', 'Vivian', 'Paul', 'Liya', 'Manu', 'Daniel', 'Shawn']
random.shuffle(all_people)
for i,name in enumerate(all_people):
    print(i,':'+name)

练习

设计下面两种彩票号码生成器:

1. 从1到22中随机抽取5个整数 (这5个数字不重复)

2. 随机产生一个8位数字,每位数字都可以是1到6中的任意一个整数。

总结

math.floor(), math.sqrt(), math.sin(), math.degrees()

random.random(), random.choice(), random.shuffle()

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python vs. C:了解关键差异Python vs. C:了解关键差异Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python vs.C:您的项目选择哪种语言?Python vs.C:您的项目选择哪种语言?Apr 21, 2025 am 12:17 AM

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

达到python目标:每天2小时的力量达到python目标:每天2小时的力量Apr 20, 2025 am 12:21 AM

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

最大化2小时:有效的Python学习策略最大化2小时:有效的Python学习策略Apr 20, 2025 am 12:20 AM

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

在Python和C之间进行选择:适合您的语言在Python和C之间进行选择:适合您的语言Apr 20, 2025 am 12:20 AM

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python与C:编程语言的比较分析Python与C:编程语言的比较分析Apr 20, 2025 am 12:14 AM

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天2小时:Python学习的潜力每天2小时:Python学习的潜力Apr 20, 2025 am 12:14 AM

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。