web数据抓取是一个经常在python的讨论中出现的主题。有很多方法可以用来进行web数据抓取,然而其中好像并没有一个最好的办法。有一些如scrapy这样十分成熟的框架,更多的则是像mechanize这样的轻量级库。DIY自己的解决方案同样十分流行:你可以使用requests、beautifulsoup或者pyquery来实现。
方法如此多样的原因在于,数据“抓取”实际上包括很多问题:你不需要使用相同的工具从成千上万的页面中抓取数据,同时使一些Web工作流自动化(例如填一些表单然后取回数据)。我喜欢DIY的原因在于其灵活性,但是却不适合用来做大量数据的抓取,因为需要请求同步,所以大量的请求意味着你不得不等待很长时间。
在本文中,我将会为你展示一个基于新的异步库(aiohttp)的请求的代替品。我使用它写了一些速度的确很快的小数据抓取器,下面我将会为你演示是如何做到的。
asyncio的基本概念
asyncio是在python3.4中被引进的异步IO库。你也可以通过python3.3的pypi来安装它。它相当的复杂,而且我不会介绍太多的细节。相反,我将会解释你需要知道些什么,以利用它来写异步的代码。
简而言之,有两件事情你需要知道:协同程序和事件循环。协同程序像是方法,但是它们可以在代码中的特定点暂停和继续。当在等待一个IO(比如一个HTTP请求),同时执行另一个请求的时候,可以用来暂停一个协同程序。我们使用关键字yield from来设定一个状态,表明我们需要一个协同程序的返回值。而事件循环则被用来安排协同程序的执行。
关于asyncio还有很多很多,但是以上是我们到目前为止需要知道的。可能你还有些不清楚,那么让我们来看一些代码吧。
aiohttp
aiohttp是一个利用asyncio的库,它的API看起来很像请求的API。到目前为止,相关文档还不健全。但是这里有一些非常有用的例子。我们将会演示它的基本用法。
首先,我们会定义一个协同程序用来获取页面,并打印出来。我们使用 asyncio.coroutine将一个方法装饰成一个协同程序。aiohttp.request是一个协同程序,所以它是一个可读方法,我们需要使用yield from来调用它们。除了这些,下面的代码看起来相当直观:
@asyncio.coroutine def print_page(url): response = yield from aiohttp.request('GET', url) body = yield from response.read_and_close(decode=True) print(body)
如你所见,我们可以使用yield from从另一个协同程序中调用一个协同程序。为了从同步代码中调用一个协同程序,我们需要一个事件循环。我们可以通过asyncio.get_event_loop()得到一个标准的事件循环,之后使用它的run_until_complete()方法来运行协同程序。所以,为了使之前的协同程序运行,我们只需要做下面的步骤:
loop = asyncio.get_event_loop() loop.run_until_complete(print_page('http://example.com'))
一个有用的方法是asyncio.wait,通过它可以获取一个协同程序的列表,同时返回一个将它们全包括在内的单独的协同程序,所以我们可以这样写:
loop.run_until_complete(asyncio.wait([print_page('http://example.com/foo'), print_page('http://example.com/bar')]))
另一个是asyncio.as_completed,通过它可以获取一个协同程序的列表,同时返回一个按完成顺序生成协同程序的迭代器,因此当你用它迭代时,会尽快得到每个可用的结果。
数据抓取
现在我们知道了如何做异步HTTP请求,因此我们可以来写一个数据抓取器了。我们仅仅还需要一些工具来读取html页面,我使用了beautifulsoup来做这个事情,其余的像 pyquery或lxml也可以实现。
在这个例子中,我们会写一个小数据抓取器来从海盗湾抓取一些linux distributions的torrent 链路(海盗湾(英语:The Pirate Bay,缩写:TPB)是一个专门存储、分类及搜索Bittorrent种子文件的网站,并自称“世界最大的BitTorrent tracker(BT种子服务器)”,提供的BT种子除了有自由版权的收集外,也有不少被著作人声称拥有版权的音频、视频、应用软件与电子游戏等,为网络分享与下载的重要网站之一–译者注来自维基百科)
首先,需要一个辅助协同程序来获取请求:
@asyncio.coroutine def get(*args, **kwargs): response = yield from aiohttp.request('GET', *args, **kwargs) return (yield from response.read_and_close(decode=True))
解析部分。本文并非介绍beautifulsoup的,所以这部分我会简写:我们获取了这个页面的第一个磁链。
def first_magnet(page): soup = bs4.BeautifulSoup(page) a = soup.find('a', title='Download this torrent using magnet') return a['href']
在这个协同程序中,url的结果通过种子的数量进行排序,所以排名第一的结果实际上是种子最多的:
@asyncio.coroutine def print_magnet(query): url = 'http://thepiratebay.se/search/{}/0/7/0'.format(query) page = yield from get(url, compress=True) magnet = first_magnet(page) print('{}: {}'.format(query, magnet))
最后,用下面的代码来调用以上所有的方法。
distros = ['archlinux', 'ubuntu', 'debian'] loop = asyncio.get_event_loop() f = asyncio.wait([print_magnet(d) for d in distros]) loop.run_until_complete(f)
结论
好了,现在我们来到了这个部分。你有了一个异步工作的小抓取器。这意味着多个页面可以同时被下载,所以这个例子要比使用请求的相同代码快3倍。现在你应该可以用相同的方法写出你自己的抓取器了。
你可以在这里找到生成的代码,也包括一些额外的建议。
你一旦熟悉了这一切,我建议你看一看asyncio的文档和aiohttp的范例,这些都能告诉你 asyncio拥有怎样的潜力。
这种方法(事实上是所有手动的方法)的一个局限在于,没有一个独立的库可以用来处理表单。机械化的方法拥有很多辅助工具,这使得提交表单变得十分简单,但是如果你不使用它们,你将不得不自己去处理这些事情。这可能会导致一些bug的出现,所以同时我可能会写一个这样的库(不过目前为止无需为此担心)。
额外的建议:不要敲打服务器
同时做3个请求很酷,但是同时做5000个就不那么好玩了。如果你打算同时做太多的请求,链接有可能会断掉。你甚至有可能会被禁止链接网络。
为了避免这些,你可以使用semaphore。这是一个可以被用来限制同时工作的协同程序数量的同步工具。我们只需要在建立循环之前创建一个semaphore ,同时把我们希望允许的同时请求的数量作为参数传给它既可:
sem = asyncio.Semaphore(5)
然后,我们只需要将下面
page = yield from get(url, compress=True)
替换成被semaphore 保护的同样的东西。
with (yield from sem): page = yield from get(url, compress=True)
这就可以保证同时最多有5个请求会被处理。
额外建议:进度条
这个东东是免费的哦:tqdm是一个用来生成进度条的优秀的库。这个协同程序就像asyncio.wait一样工作,不过会显示一个代表完成度的进度条。
@asyncio.coroutine def wait_with_progress(coros): for f in tqdm.tqdm(asyncio.as_completed(coros), total=len(coros)): yield from f

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

Python3.6环境下加载Pickle文件报错:ModuleNotFoundError:Nomodulenamed...

如何解决jieba分词在景区评论分析中的问题?当我们在进行景区评论分析时,往往会使用jieba分词工具来处理文�...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

Atom编辑器mac版下载
最流行的的开源编辑器