我经常需要用Python与solr进行异步请求工作。这里有段代码阻塞在Solr http请求上, 直到第一个完成才会执行第二个请求,代码如下:
import requests #Search 1 solrResp = requests.get('http://mysolr.com/solr/statedecoded/search?q=law') for doc in solrResp.json()['response']['docs']: print doc['catch_line'] #Search 2 solrResp = requests.get('http://mysolr.com/solr/statedecoded/search?q=shoplifting') for doc in solrResp.json()['response']['docs']: print doc['catch_line']
(我们用Requests库进行http请求)
通过脚本把文档索引到Solr, 进而可以并行工作是很好的。我需要扩展我的工作,因此索引瓶颈是Solr,而不是网络请求。
不幸的是,当进行异步编程时python不像Javascript或Go那样方便。但是,gevent库能给我们带来些帮助。gevent底层用的是libevent库,构建于原生异步调用(select, poll等原始异步调用),libevent很好的协调很多低层的异步功能。
使用gevent很简单,让人纠结的一点就是thegevent.monkey.patch_all(), 为更好的与gevent的异步协作,它修补了很多标准库。听起来很恐怖,但是我还没有在使用这个补丁实现时遇到 问题。
事不宜迟,下面就是你如果用gevents来并行Solr请求:
import requests from gevent import monkey import gevent monkey.patch_all() class Searcher(object): """ Simple wrapper for doing a search and collecting the results """ def __init__(self, searchUrl): self.searchUrl = searchUrl def search(self): solrResp = requests.get(self.searchUrl) self.docs = solrResp.json()['response']['docs'] def searchMultiple(urls): """ Use gevent to execute the passed in urls; dump the results""" searchers = [Searcher(url) for url in urls] # Gather a handle for each task handles = [] for searcher in searchers: handles.append(gevent.spawn(searcher.search)) # Block until all work is done gevent.joinall(handles) # Dump the results for searcher in searchers: print "Search Results for %s" % searcher.searchUrl for doc in searcher.docs: print doc['catch_line'] searchUrls = ['http://mysolr.com/solr/statedecoded/search?q=law', 'http://mysolr.com/solr/statedecoded/search?q=shoplifting']
searchMultiple(searchUrls)
代码增加了,而且不如相同功能的Javascript代码简洁,但是它能完成相应的工作,代码的精髓是下面几行:
# Gather a handle for each task handles = [] for searcher in searchers: handles.append(gevent.spawn(searcher.search)) # Block until all work is done gevent.joinall(handles)
我们让gevent产生searcher.search, 我们可以对产生的任务进行操作,然后我们可以随意的等着所有产生的任务完成,最后导出结果。
差不多就这样子.如果你有任何想法请给我们留言。让我们知道我们如何能为你的Solr搜索应用提供帮助。

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

SublimeText3 Linux新版
SublimeText3 Linux最新版

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中