首先看一下来自Wolfram的定义
马尔可夫链是随机变量{X_t}的集合(t贯穿0,1,...),给定当前的状态,未来与过去条件独立。
Wikipedia的定义更清楚一点儿
...马尔可夫链是具有马尔可夫性质的随机过程...[这意味着]状态改变是概率性的,未来的状态仅仅依赖当前的状态。
马尔可夫链具有多种用途,现在让我看一下如何用它生产看起来像模像样的胡言乱语。
算法如下,
- 找一个作为语料库的文本,语料库用于选择接下来的转换。
- 从文本中两个连续的单词开始,最后的两个单词构成当前状态。
- 生成下一个单词的过程就是马尔可夫转换。为了生成下一个单词,首先查看语料库,查找这两个单词之后跟着的单词。从它们中随机选择一个。
- 重复2,直到生成的文本达到需要的大小。
代码如下
import random class Markov(object): def __init__(self, open_file): self.cache = {} self.open_file = open_file self.words = self.file_to_words() self.word_size = len(self.words) self.database() def file_to_words(self): self.open_file.seek(0) data = self.open_file.read() words = data.split() return words def triples(self): """ Generates triples from the given data string. So if our string were "What a lovely day", we'd generate (What, a, lovely) and then (a, lovely, day). """ if len(self.words) < 3: return for i in range(len(self.words) - 2): yield (self.words[i], self.words[i+1], self.words[i+2]) def database(self): for w1, w2, w3 in self.triples(): key = (w1, w2) if key in self.cache: self.cache[key].append(w3) else: self.cache[key] = [w3] def generate_markov_text(self, size=25): seed = random.randint(0, self.word_size-3) seed_word, next_word = self.words[seed], self.words[seed+1] w1, w2 = seed_word, next_word gen_words = [] for i in xrange(size): gen_words.append(w1) w1, w2 = w2, random.choice(self.cache[(w1, w2)]) gen_words.append(w2) return ' '.join(gen_words)
为了看到一个示例结果,我们从古腾堡计划中拿了沃德豪斯的《My man jeeves》作为文本,示例结果如下。
In [1]: file_ = open('/home/shabda/jeeves.txt') In [2]: import markovgen In [3]: markov = markovgen.Markov(file_) In [4]: markov.generate_markov_text() Out[4]: 'Can you put a few years of your twin-brother Alfred, who was apt to rally round a bit. I should strongly advocate the blue with milk'
[如果想执行这个例子,请下载jeeves.txt和markovgen.py
马尔可夫算法怎样呢?
- 最后两个单词是当前状态。
- 接下来的单词仅仅依赖最后两个单词,也就是当前状态。
- 接下来的单词是从语料库的统计模型中随机选择的。
这是一个示例文本。
这个文本对应的语料库像这样,
{('The', 'quick'): ['brown'], ('brown', 'fox'): ['jumps', 'who', 'who'], ('fox', 'jumps'): ['over'], ('fox', 'who'): ['is', 'is'], ('is', 'slow'): ['jumps'], ('jumps', 'over'): ['the', 'the'], ('over', 'the'): ['brown', 'brown'], ('quick', 'brown'): ['fox'], ('slow', 'jumps'): ['over'], ('the', 'brown'): ['fox', 'fox'], ('who', 'is'): ['slow', 'dead.']}
现在如果我们从"brown fox"开始,接下来的单词可以是"jumps"或者"who"。如果我们选择"jumps",然后当前的状态就变成了"fox jumps",再接下的单词就是"over",之后依此类推。
提示
- 我们选择的文本越大,每次转换的选择更多,生成的文本更好看。
- 状态可以设置为依赖一个单词、两个单词或者任意数量的单词。随着每个状态的单词数的增加,生成的文本更不随机。
- 不要去掉标点符号等。它们会使语料库更具代表性,随机文本更好看。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

Dreamweaver CS6
视觉化网页开发工具

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中