现在Docker是地球上最炙手可热的项目之一,就意味着人民实际上不仅仅是因为这个才喜欢它。
话虽如此,我非常喜欢使用容器,服务发现以及所有被创造出的新趣的点子和领域来切换工作作为范例。
这个文章中我会简要介绍使用python中的docker-py模块来操作Docker 容器,这里会使用我喜爱的编程工具IPython。
安装docker-py
首先需要docker-py。注意这里的案例中我将会使用Ubuntu Trusty 14.04版本。
$ pip install docker-py
IPyhton
我真的很喜欢用IPython来探索Python。 它像是一共高级的python Shell,但是可以做的更多。
$ sudo apt-get install ipython
SNIP!
$ ipython
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
Type "copyright", "credits" or "license" for more information.
IPython 1.2.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In [1]:
安装 docker
如果没有安装Docker,那首先安装docker
$ sudo apt-get install docker.io
然后把 docker.io 起个别名 docker
$ alias docker='docker.io'
$ docker version
Client version: 0.9.1
Go version (client): go1.2.1
Git commit (client): 3600720
Server version: 0.9.1
Git commit (server): 3600720
Go version (server): go1.2.1
Last stable version: 0.11.1, please update docker
Docker现在应该有个socket开启,我们可以用来连接。
$ ls /var/run/docker.sock
/var/run/docker.sock
Pull 镜像
让我们下载 busybox镜像
$ docker pull busybox
Pulling repository busybox
71e18d715071: Download complete
98b9fdab1cb6: Download complete
1277aa3f93b3: Download complete
6e0a2595b580: Download complete
511136ea3c5a: Download complete
b6c0d171b362: Download complete
8464f9ac64e8: Download complete
9798716626f6: Download complete
fc1343e2fca0: Download complete
f3c823ac7aa6: Download complete
现在我们准备使用 docker-py 了。
使用 docker-py
现在我们有了docker-py , IPython, Docker 和 busybox 镜像,我们就能建立一些容器。
如果你不是很熟悉IPython,可以参照这个教程学习(http://ipython.org/ipython-doc/stable/interactive/tutorial.html),
IPython是十分强大的。
首先启动一个IPython ,导入docker模块。
$ ipython
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
Type "copyright", "credits" or "license" for more information.
IPython 1.2.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In [1]: import docker
然后我们建立一个连接到Docker
In [2]: c = docker.Client(base_url='unix://var/run/docker.sock',
...: version='1.9',
...: timeout=10)
现在我们已经连接到Docker。
IPython使用tab键来补全的。 如果 输入 “c.” 然后按下tab键,IPython会显示Docker连接对象所有的方法和属性。
In [3]: c.
c.adapters c.headers c.pull
c.attach c.history c.push
c.attach_socket c.hooks c.put
c.auth c.images c.remove_container
c.base_url c.import_image c.remove_image
c.build c.info c.request
c.cert c.insert c.resolve_redirects
c.close c.inspect_container c.restart
c.commit c.inspect_image c.search
c.containers c.kill c.send
c.cookies c.login c.start
c.copy c.logs c.stop
c.create_container c.max_redirects c.stream
c.create_container_from_config c.mount c.tag
c.delete c.options c.top
c.diff c.params c.trust_env
c.events c.patch c.verify
c.export c.port c.version
c.get c.post c.wait
c.get_adapter c.prepare_request
c.head c.proxies
让我们来看下c.images 我输入一个 “?”在c.之后,ipython 会提供这个对象的详细信息。
In [5]: c.images?
Type: instancemethod
String Form:
File: /usr/local/lib/python2.7/dist-packages/docker/client.py
Definition: c.images(self, name=None, quiet=False, all=False, viz=False)
Docstring:
获取busybox 镜像。
In [6]: c.images(name="busybox")
Out[6]:
[{u'Created': 1401402591,
u'Id': u'71e18d715071d6ba89a041d1e696b3d201e82a7525fbd35e2763b8e066a3e4de',
u'ParentId': u'8464f9ac64e87252a91be3fbb99cee20cda3188de5365bec7975881f389be343',
u'RepoTags': [u'busybox:buildroot-2013.08.1'],
u'Size': 0,
u'VirtualSize': 2489301},
{u'Created': 1401402590,
u'Id': u'1277aa3f93b3da774690bc4f0d8bf257ff372e23310b4a5d3803c180c0d64cd5',
u'ParentId': u'f3c823ac7aa6ef78d83f19167d5e2592d2c7f208058bc70bf5629d4bb4ab996c',
u'RepoTags': [u'busybox:ubuntu-14.04'],
u'Size': 0,
u'VirtualSize': 5609404},
{u'Created': 1401402589,
u'Id': u'6e0a2595b5807b4f8c109f3c6c5c3d59c9873a5650b51a4480b61428427ab5d8',
u'ParentId': u'fc1343e2fca04a455f803ba66d1865739e0243aca6c9d5fd55f4f73f1e28456e',
u'RepoTags': [u'busybox:ubuntu-12.04'],
u'Size': 0,
u'VirtualSize': 5454693},
{u'Created': 1401402587,
u'Id': u'98b9fdab1cb6e25411eea5c44241561326c336d3e0efae86e0239a1fe56fbfd4',
u'ParentId': u'9798716626f6ae4e6b7f28451c0a1a603dc534fe5d9dd3900150114f89386216',
u'RepoTags': [u'busybox:buildroot-2014.02', u'busybox:latest'],
u'Size': 0,
u'VirtualSize': 2433303}]
建立一个容器。 注意我添加一个可以将要运行的命令,这里用的是”env”命令。
In [8]: c.create_container(image="busybox", command="env")
Out[8]:
{u'Id': u'584459a09e6d4180757cb5c10ac354ca46a32bf8e122fa3fb71566108f330c87',
u'Warnings': None}
使用ID来启动这个容器
In [9]: c.start(container="584459a09e6d4180757cb5c10ac354ca46a32bf8e122fa3fb71566108f330c87")
我们可以检查日志,应该可以看到当容器创建的时候 ,我们配置的”env”命令的输出。
In [11]: c.logs(container="584459a09e6d4180757cb5c10ac354ca46a32bf8e122fa3fb71566108f330c87")
Out[11]: 'HOME=/\nPATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\nHOSTNAME=584459a09e6d\n'
如果使用docker命令行,使用同样的命令行选项运行一个容器,应该可以看到类似的信息。
$ docker run busybox env
HOME=/
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=ce3ad38a52bf
据我所知,docker-py没有运行选项,我们只能创建一个容器然后启动它。
以下是一个案例:
In [17]: busybox = c.create_container(image="busybox", command="echo hi")
In [18]: busybox?
Type: dict
String Form:{u'Id': u'34ede853ee0e95887ea333523d559efae7dcbe6ae7147aa971c544133a72e254', u'Warnings': None}
Length: 2
Docstring:
dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object's
(key, value) pairs
dict(iterable) -> new dictionary initialized as if via:
d = {}
for k, v in iterable:
d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
in the keyword argument list. For example: dict(one=1, two=2)
In [19]: c.start(busybox.get("Id"))
In [20]: c.logs(busybox.get("Id"))
Out[20]: 'hi\n'
如果你还没有使用过busybox镜像,我建议你使用下。我也建议debain下的jessie镜像,它只有120MB,比Ubuntu镜像要小。
总结
Docker是一个吸引人的新系统,可以用来建立有趣的新技术应用,特别是云服务相关的。使用IPython我们探索了怎么使用
docker-py模块来创建docker 容器。 现在使用python,我们可以结合docker和容易 创造出很多新的点子。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

Python3.6环境下加载Pickle文件报错:ModuleNotFoundError:Nomodulenamed...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

SublimeText3 Linux新版
SublimeText3 Linux最新版

Dreamweaver Mac版
视觉化网页开发工具