写下这篇博客,起源于Tornado邮件群组的这个问题how to use outer variable in inner method,这里面老外的回答很有参考价值,关键点基本都说到了。我在这里用一些有趣的例子来做些解析,简要的阐述下Python的闭包规则,首先看一个经典的例子:
def foo(): a = 1 def bar(): a = a + 1 # print a + 1 # b = a + 1 # a = 1 print id(a) bar() print a, id(a)
在Python2.x上运行这个函数会报UnboundLocalError: local variable 'a' referenced before assignment即本地变量在引用前未定义,如何来理解这个错误呢?PEP 227里面介绍到,Python解析器在搜索一个变量的定义时是根据如下三级规则来查找的:
The Python 2.0 definition specifies exactly three namespaces to check for each name — the local namespace, the global namespace, and the builtin namespace.
这里的local实际上可能还有多级,上面的代码就是一个例子,下面通过对代码做些简单的修改来一步步理解这里面的规律:
- 如果将a = a + 1这句换成print a + 1或者b = a + 1,是不会有问题的,即在内部函数bar内,外部函数foo里的a实际是可见的,可以引用。
- 将a = a + 1换成 a = 1也是没有问题的,但是如果你将两处出现的a的id打印出来你会发现,其实这两个a不是一回事,在内部函数bar里面,本地的a = 1定义了在bar函数范围内的新的一个局部变量,因为名字和外部函数foo里面的变量a名字相同,导致外部函数foo里的a在内部函数bar里实际已不可见。
- 再来说a = a + 1出错是怎么回事,首先a = xxx这种形式,Python解析器认为要在内部函数bar内创建一个新的局部变量a,同时外部函数foo里的a在bar里已不可见,而解析器对接下来对右边的a + 1的解析就是用本地的变量a加1,而这时左边的a即本地的变量a还没有创建(等右边赋值呢),因此就这就产生了一个是鸡生蛋还是蛋生鸡的问题,导致了上面说的UnboundLocalError的错误。
要解决这个问题,在Python2.x里主要有两个方案:
用别名替代比如b = a + 1,内部函数bar内只引用外部函数foo里的a。
将foo里的a设成一个容器,如list
def foo(): a = [1, ] def bar(): a[0] = a[0] + 1 bar() print a[0]
当然这有些时候还是很不方便,因此在Python3.x中引入了一个nonloacal的关键字来解决这个问题,只要在a = a + 1前加一句nonloacal a即可,即显式的指定a不是内部函数bar内的本地变量,这样就可以在bar内正常的使用和再赋值外部函数foo内的变量a了。
在搜索Python闭包相关的材料中,我在StackOverflow上发现一个有趣的有关Python闭包的问题,有兴趣的可以思考思考做做看,结果应该是什么?你预期的结果是什么,若不一致,如果要得到你预期的结果应该怎么改?
flist = [] for i in xrange(3): def func(x): return x * i flist.append(func) for f in flist: print f(2)

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python在现实世界中的应用包括数据分析、Web开发、人工智能和自动化。1)在数据分析中,Python使用Pandas和Matplotlib处理和可视化数据。2)Web开发中,Django和Flask框架简化了Web应用的创建。3)人工智能领域,TensorFlow和PyTorch用于构建和训练模型。4)自动化方面,Python脚本可用于复制文件等任务。

Python在数据科学、Web开发和自动化脚本领域广泛应用。1)在数据科学中,Python通过NumPy、Pandas等库简化数据处理和分析。2)在Web开发中,Django和Flask框架使开发者能快速构建应用。3)在自动化脚本中,Python的简洁性和标准库使其成为理想选择。

Python的灵活性体现在多范式支持和动态类型系统,易用性则源于语法简洁和丰富的标准库。1.灵活性:支持面向对象、函数式和过程式编程,动态类型系统提高开发效率。2.易用性:语法接近自然语言,标准库涵盖广泛功能,简化开发过程。

Python因其简洁与强大而备受青睐,适用于从初学者到高级开发者的各种需求。其多功能性体现在:1)易学易用,语法简单;2)丰富的库和框架,如NumPy、Pandas等;3)跨平台支持,可在多种操作系统上运行;4)适合脚本和自动化任务,提升工作效率。

可以,在每天花费两个小时的时间内学会Python。1.制定合理的学习计划,2.选择合适的学习资源,3.通过实践巩固所学知识,这些步骤能帮助你在短时间内掌握Python。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。