一、类定义:
class <类名>: <语句>
类实例化后,可以使用其属性,实际上,创建一个类之后,可以通过类名访问其属性
如果直接使用类名修改其属性,那么将直接影响到已经实例化的对象
类的私有属性:
__private_attrs 两个下划线开头,声明该属性为私有,不能在类地外部被使用或直接访问
在类内部的方法中使用时 self.__private_attrs
类的方法
在类地内部,使用def关键字可以为类定义一个方法,与一般函数定义不同,类方法必须包含参数self,且为第一个参数
私有的类方法
__private_method 两个下划线开头,声明该方法为私有方法,不能在类地外部调用
在类的内部调用slef.__private_methods
类的专有方法:
__init__ 构造函数,在生成对象时调用
__del__ 析构函数,释放对象时使用
__repr__ 打印,转换
__setitem__按照索引赋值
__getitem__按照索引获取值
__len__获得长度
__cmp__比较运算
__call__函数调用
__add__加运算
__sub__减运算
__mul__乘运算
__div__除运算
__mod__求余运算
__pow__称方
示例:
#类定义 class people: #定义基本属性 name = '' age = 0 #定义私有属性,私有属性在类外部无法直接进行访问 __weight = 0 #定义构造方法 def __init__(self,n,a,w): self.name = n self.age = a self.__weight = w def speak(self): print("%s is speaking: I am %d years old" %(self.name,self.age)) p = people('tom',10,30) p.speak()
二、继承类定义:
1.单继承
class <类名>(父类名) <语句> eg. class childbook(book) age = 10
2.类的多重继承
class 类名(父类1,父类2,....,父类n) <语句1>
需要注意圆括号中父类的顺序,若是父类中有相同的方法名,而在子类使用时未指定,python从左至右搜索,即方法在子类中未找到时,从左到右查找父类中是否包含方法
#另一个类,多重继承之前的准备 class speaker(): topic = '' name = '' def __init__(self,n,t): self.name = n self.topic = t def speak(self): print("I am %s,I am a speaker!My topic is %s"%(self.name,self.topic)) #多重继承 class sample(speaker,student): a ='' def __init__(self,n,a,w,g,t): student.__init__(self,n,a,w,g) speaker.__init__(self,n,t) test = sample("Tim",25,80,4,"Python") test.speak()#方法名同,默认调用的是在括号中排前地父类的方法
类方法的覆写——子类覆盖掉父类的方法
def 方法名与父类一致
若是在方法中要使用到父类方法 父类名.方法名
若是将类放到了模块中
使用时
import A l = A.类()
以上三段程序的执行结果:

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

Dreamweaver Mac版
视觉化网页开发工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。