搜索
首页后端开发Python教程在Linux下使用Python的matplotlib绘制数据图的教程

如果你想要在Linxu中获得一个高效、自动化、高质量的科学画图的解决方案,应该考虑尝试下matplotlib库。Matplotlib是基于python的开源科学测绘包,基于python软件基金会许可证发布。大量的文档和例子、集成了Python和Numpy科学计算包、以及自动化能力,是作为Linux环境中进行科学画图的可靠选择的几个原因。这个教程将提供几个用matplotlib画图的例子。
特性

  •     支持众多的图表类型,如:bar,box,contour,histogram,scatter,line plots....
  •     基于python的语法
  •     集成Numpy科学计算包
  •     数据源可以是 python 的列表、键值对和数组
  •     可定制的图表格式(坐标轴缩放、标签位置及标签内容等)
  •     可定制文本(字体,大小,位置...)
  •     支持TeX格式(等式,符号,希腊字体...)
  •     与IPython相兼容(允许在 python shell 中与图表交互)
  •     自动化(使用 Python 循环创建图表)
  •     用Python 的循环迭代生成图片
  •     保存所绘图片格式为图片文件,如:png,pdf,ps,eps,svg等

基于Python语法的matplotlib是其许多特性和高效工作流的基础。世面上有许多用于绘制高质量图的科学绘图包,但是这些包允许你直接在你的Python代码中去使用吗?除此以外,这些包允许你创建可以保存为图片文件的图片吗?Matplotlib允许你完成所有的这些任务。从而你可以节省时间,使用它你能够花更少的时间创建更多的图片。
安装

安装Python和Numpy包是使用Matplotlib的前提。

可以通过如下命令在Debian或Ubuntu中安装Matplotlib:

  $ sudo apt-get install python-matplotlib 

在Fedora或CentOS/RHEL环境则可用如下命令:

  $ sudo yum install python-matplotlib 

Matplotlib 例子

本教程会提供几个绘图例子演示如何使用matplotlib:

  •     离散图和线性图
  •     柱状图
  •     饼状图

在这些例子中我们将用Python脚本来执行Mapplotlib命令。注意numpy和matplotlib模块需要通过import命令在脚本中进行导入。

np为nuupy模块的命名空间引用,plt为matplotlib.pyplot的命名空间引用:

  import numpy as np
  import matplotlib.pyplot as plt

例1:离散和线性图

第一个脚本,script1.py 完成如下任务:

  •     创建3个数据集(xData,yData1和yData2)
  •     创建一个宽8英寸、高6英寸的图(赋值1)
  •     设置图画的标题、x轴标签、y轴标签(字号均为14)
  •     绘制第一个数据集:yData1为xData数据集的函数,用圆点标识的离散蓝线,标识为"y1 data"
  •     绘制第二个数据集:yData2为xData数据集的函数,采用红实线,标识为"y2 data"
  •     把图例放置在图的左上角
  •     保存图片为PNG格式文件

script1.py的内容如下:  

 import numpy as np
  import matplotlib.pyplot as plt
   
  xData = np.arange(0, 10, 1)
  yData1 = xData.__pow__(2.0)
  yData2 = np.arange(15, 61, 5)
  plt.figure(num=1, figsize=(8, 6))
  plt.title('Plot 1', size=14)
  plt.xlabel('x-axis', size=14)
  plt.ylabel('y-axis', size=14)
  plt.plot(xData, yData1, color='b', linestyle='--', marker='o', label='y1 data')
  plt.plot(xData, yData2, color='r', linestyle='-', label='y2 data')
  plt.legend(loc='upper left')
  plt.savefig('images/plot1.png', format='png')

所画之图如下:

201561190648250.jpg (640×480)

例2:柱状图

第二个脚本,script2.py 完成如下任务:

  •     创建一个包含1000个随机样本的正态分布数据集。
  •     创建一个宽8英寸、高6英寸的图(赋值1)
  •     设置图的标题、x轴标签、y轴标签(字号均为14)
  •     用samples这个数据集画一个40个柱状,边从-10到10的柱状图
  •     添加文本,用TeX格式显示希腊字母mu和sigma(字号为16)
  •     保存图片为PNG格式。

script2.py代码如下:

  import numpy as np
  import matplotlib.pyplot as plt
   
  mu = 0.0
  sigma = 2.0
  samples = np.random.normal(loc=mu, scale=sigma, size=1000)
  plt.figure(num=1, figsize=(8, 6))
  plt.title('Plot 2', size=14)
  plt.xlabel('value', size=14)
  plt.ylabel('counts', size=14)
  plt.hist(samples, bins=40, range=(-10, 10))
  plt.text(-9, 100, r'$\mu$ = 0.0, $\sigma$ = 2.0', size=16)
  plt.savefig('images/plot2.png', format='png')

结果见如下链接:

201561190740111.jpg (640×480)

例3:饼状图

第三个脚本,script3.py 完成如下任务:

  •     创建一个包含5个整数的列表
  •     创建一个宽6英寸、高6英寸的图(赋值1)
  •     添加一个长宽比为1的轴图
  •     设置图的标题(字号为14)
  •     用data列表画一个包含标签的饼状图
  •     保存图为PNG格式

脚本script3.py的代码如下:

  import numpy as np
  import matplotlib.pyplot as plt
   
  data = [33, 25, 20, 12, 10]
  plt.figure(num=1, figsize=(6, 6))
  plt.axes(aspect=1)
  plt.title('Plot 3', size=14)
  plt.pie(data, labels=('Group 1', 'Group 2', 'Group 3', 'Group 4', 'Group 5'))
  plt.savefig('images/plot3.png', format='png')

结果如下链接所示:

201561190812025.jpg (640×480)

总结

这个教程提供了几个用matplotlib科学画图包进行画图的例子,Matplotlib是在Linux环境中用于解决科学画图的绝佳方案,表现在其无缝地和Python、Numpy连接、自动化能力,和提供多种自定义的高质量的画图产品。

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python:深入研究汇编和解释Python:深入研究汇编和解释May 12, 2025 am 12:14 AM

pythonisehybridmodelofcompilationand interpretation:1)thepythoninterspretercompilesourcececodeintoplatform- interpententbybytecode.2)thepytythonvirtualmachine(pvm)thenexecuteCutestestestesteSteSteSteSteSteSthisByTecode,BelancingEaseofuseWithPerformance。

Python是一种解释或编译语言,为什么重要?Python是一种解释或编译语言,为什么重要?May 12, 2025 am 12:09 AM

pythonisbothinterpretedAndCompiled.1)它的compiledTobyTecodeForportabilityAcrosplatforms.2)bytecodeisthenInterpreted,允许fordingfordforderynamictynamictymictymictymictyandrapiddefupment,尽管Ititmaybeslowerthananeflowerthanancompiledcompiledlanguages。

对于python中的循环时循环与循环:解释了关键差异对于python中的循环时循环与循环:解释了关键差异May 12, 2025 am 12:08 AM

在您的知识之际,而foroopsareideal insinAdvance中,而WhileLoopSareBetterForsituations则youneedtoloopuntilaconditionismet

循环时:实用指南循环时:实用指南May 12, 2025 am 12:07 AM

ForboopSareSusedwhenthentheneMberofiterationsiskNownInAdvance,而WhileLoopSareSareDestrationsDepportonAcondition.1)ForloopSareIdealForiteratingOverSequencesLikelistSorarrays.2)whileLeleLooleSuitableApeableableableableableableforscenarioscenarioswhereTheLeTheLeTheLeTeLoopContinusunuesuntilaspecificiccificcificCondond

Python:它是真正的解释吗?揭穿神话Python:它是真正的解释吗?揭穿神话May 12, 2025 am 12:05 AM

pythonisnotpuroly interpred; itosisehybridablectofbytecodecompilationandruntimeinterpretation.1)PythonCompiLessourceceCeceDintobyTecode,whitsthenexecececected bytybytybythepythepythepythonvirtirtualmachine(pvm).2)

与同一元素的Python串联列表与同一元素的Python串联列表May 11, 2025 am 12:08 AM

concateNateListsinpythonwithTheSamelements,使用:1)operatototakeepduplicates,2)asettoremavelemavphicates,or3)listCompreanspearensionforcontroloverduplicates,每个methodhasdhasdifferentperferentperferentperforentperforentperforentperfortenceandordormplications。

解释与编译语言:Python的位置解释与编译语言:Python的位置May 11, 2025 am 12:07 AM

pythonisanterpretedlanguage,offeringosofuseandflexibilitybutfacingperformancelanceLimitationsInCricapplications.1)drightingedlanguageslikeLikeLikeLikeLikeLikeLikeLikeThonexecuteline-by-line,允许ImmediaMediaMediaMediaMediaMediateFeedBackAndBackAndRapidPrototypiD.2)compiledLanguagesLanguagesLagagesLikagesLikec/c thresst

循环时:您什么时候在Python中使用?循环时:您什么时候在Python中使用?May 11, 2025 am 12:05 AM

Useforloopswhenthenumberofiterationsisknowninadvance,andwhileloopswheniterationsdependonacondition.1)Forloopsareidealforsequenceslikelistsorranges.2)Whileloopssuitscenarioswheretheloopcontinuesuntilaspecificconditionismet,usefulforuserinputsoralgorit

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具