本文实例讲述了python查找指定具有相同内容文件的方法。分享给大家供大家参考。具体如下:
python代码用于查找指定具有相同内容的文件,可以同时指定多个目录
调用方式:python doublesdetector.py c:\;d:\;e:\ > doubles.txt
# Hello, this script is written in Python - http://www.python.org # doublesdetector.py 1.0p import os, os.path, string, sys, sha message = """ doublesdetector.py 1.0p This script will search for files that are identical (whatever their name/date/time). Syntax : python %s <directories> where <directories> is a directory or a list of directories separated by a semicolon (;) Examples : python %s c:\windows python %s c:\;d:\;e:\ > doubles.txt python %s c:\program files > doubles.txt This script is public domain. Feel free to reuse and tweak it. The author of this script Sebastien SAUVAGE <sebsauvage at sebsauvage dot net> http://sebsauvage.net/python/ """ % ((sys.argv[0], )*4) def fileSHA ( filepath ) : """ Compute SHA (Secure Hash Algorythm) of a file. Input : filepath : full path and name of file (eg. 'c:\windows\emm386.exe') Output : string : contains the hexadecimal representation of the SHA of the file. returns '0' if file could not be read (file not found, no read rights...) """ try: file = open(filepath,'rb') digest = sha.new() data = file.read(65536) while len(data) != 0: digest.update(data) data = file.read(65536) file.close() except: return '0' else: return digest.hexdigest() def detectDoubles( directories ): fileslist = {} # Group all files by size (in the fileslist dictionnary) for directory in directories.split(';'): directory = os.path.abspath(directory) sys.stderr.write('Scanning directory '+directory+'...') os.path.walk(directory,callback,fileslist) sys.stderr.write('\n') sys.stderr.write('Comparing files...') # Remove keys (filesize) in the dictionnary which have only 1 file for (filesize,listoffiles) in fileslist.items(): if len(listoffiles) == 1: del fileslist[filesize] # Now compute SHA of files that have the same size, # and group files by SHA (in the filessha dictionnary) filessha = {} while len(fileslist)>0: (filesize,listoffiles) = fileslist.popitem() for filepath in listoffiles: sys.stderr.write('.') sha = fileSHA(filepath) if filessha.has_key(sha): filessha[sha].append(filepath) else: filessha[sha] = [filepath] if filessha.has_key('0'): del filessha['0'] # Remove keys (sha) in the dictionnary which have only 1 file for (sha,listoffiles) in filessha.items(): if len(listoffiles) == 1: del filessha[sha] sys.stderr.write('\n') return filessha def callback(fileslist,directory,files): sys.stderr.write('.') for fileName in files: filepath = os.path.join(directory,fileName) if os.path.isfile(filepath): filesize = os.stat(filepath)[6] if fileslist.has_key(filesize): fileslist[filesize].append(filepath) else: fileslist[filesize] = [filepath] if len(sys.argv)>1 : doubles = detectDoubles(" ".join(sys.argv[1:])) print 'The following files are identical:' print '\n'.join(["----\n%s" % '\n'.join(doubles[filesha]) for filesha in doubles.keys()]) print '----' else: print message
希望本文所述对大家的Python程序设计有所帮助。

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,内存效率段

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

Inpython,一个“列表” isaversatile,mutableSequencethatCanholdMixedDatateTypes,而“阵列” isamorememory-效率,均质sepersequeSequeSequeReDencErequiringElements.1)

pythonlistsandArraysareBothable.1)列表Sareflexibleandsupportereceneousdatabutarelessmory-Memory-Empefficity.2)ArraysareMoremoremoremoreMemoremorememorememorememoremorememogeneSdatabutlesserversEversementime,defteringcorcttypecrecttypececeDepeceDyusagetoagetoavoavoiDerrors。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

Dreamweaver Mac版
视觉化网页开发工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。