本文实例讲述了python开发之基于thread线程搜索本地文件的方法。分享给大家供大家参考,具体如下:
先来看看运行效果图:
利用多个线程处理搜索的问题,我们可以发现他很快....
下面是代码部分:
# A parallelized "find(1)" using the thread module. # This demonstrates the use of a work queue and worker threads. # It really does do more stats/sec when using multiple threads, # although the improvement is only about 20-30 percent. # (That was 8 years ago. In 2002, on Linux, I can't measure # a speedup. :-( ) # I'm too lazy to write a command line parser for the full find(1) # command line syntax, so the predicate it searches for is wired-in, # see function selector() below. (It currently searches for files with # world write permission.) # Usage: parfind.py [-w nworkers] [directory] ... # Default nworkers is 4 import sys import getopt import time import os from stat import * import _thread as thread # Work queue class. Usage: # wq = WorkQ() # wq.addwork(func, (arg1, arg2, ...)) # one or more calls # wq.run(nworkers) # The work is done when wq.run() completes. # The function calls executed by the workers may add more work. # Don't use keyboard interrupts! class WorkQ: # Invariants: # - busy and work are only modified when mutex is locked # - len(work) is the number of jobs ready to be taken # - busy is the number of jobs being done # - todo is locked iff there is no work and somebody is busy def __init__(self): self.mutex = thread.allocate() self.todo = thread.allocate() self.todo.acquire() self.work = [] self.busy = 0 def addwork(self, func, args): job = (func, args) self.mutex.acquire() self.work.append(job) self.mutex.release() if len(self.work) == 1: self.todo.release() def _getwork(self): self.todo.acquire() self.mutex.acquire() if self.busy == 0 and len(self.work) == 0: self.mutex.release() self.todo.release() return None job = self.work[0] del self.work[0] self.busy = self.busy + 1 self.mutex.release() if len(self.work) > 0: self.todo.release() return job def _donework(self): self.mutex.acquire() self.busy = self.busy - 1 if self.busy == 0 and len(self.work) == 0: self.todo.release() self.mutex.release() def _worker(self): time.sleep(0.00001) # Let other threads run while 1: job = self._getwork() if not job: break func, args = job func(*args) self._donework() def run(self, nworkers): if not self.work: return # Nothing to do for i in range(nworkers-1): thread.start_new(self._worker, ()) self._worker() self.todo.acquire() # Main program def main(): nworkers = 4 #print(getopt.getopt(sys.argv[1:], '-w:')) opts, args = getopt.getopt(sys.argv[1:], '-w:') for opt, arg in opts: if opt == '-w': nworkers = int(arg) if not args: #print(os.curdir) args = [os.curdir] wq = WorkQ() for dir in args: wq.addwork(find, (dir, selector, wq)) t1 = time.time() wq.run(nworkers) t2 = time.time() sys.stderr.write('Total time %r sec.\n' % (t2-t1)) # The predicate -- defines what files we look for. # Feel free to change this to suit your purpose def selector(dir, name, fullname, stat): # Look for world writable files that are not symlinks return (stat[ST_MODE] & 0o002) != 0 and not S_ISLNK(stat[ST_MODE]) # The find procedure -- calls wq.addwork() for subdirectories def find(dir, pred, wq): try: names = os.listdir(dir) except os.error as msg: print(repr(dir), ':', msg) return for name in names: if name not in (os.curdir, os.pardir): fullname = os.path.join(dir, name) try: stat = os.lstat(fullname) except os.error as msg: print(repr(fullname), ':', msg) continue if pred(dir, name, fullname, stat): print(fullname) if S_ISDIR(stat[ST_MODE]): if not os.path.ismount(fullname): wq.addwork(find, (fullname, pred, wq)) # Call the main program main()
希望本文所述对大家Python程序设计有所帮助。

pythonisehybridmodelofcompilationand interpretation:1)thepythoninterspretercompilesourcececodeintoplatform- interpententbybytecode.2)thepytythonvirtualmachine(pvm)thenexecuteCutestestestesteSteSteSteSteSteSthisByTecode,BelancingEaseofuseWithPerformance。

pythonisbothinterpretedAndCompiled.1)它的compiledTobyTecodeForportabilityAcrosplatforms.2)bytecodeisthenInterpreted,允许fordingfordforderynamictynamictymictymictymictyandrapiddefupment,尽管Ititmaybeslowerthananeflowerthanancompiledcompiledlanguages。

在您的知识之际,而foroopsareideal insinAdvance中,而WhileLoopSareBetterForsituations则youneedtoloopuntilaconditionismet

ForboopSareSusedwhenthentheneMberofiterationsiskNownInAdvance,而WhileLoopSareSareDestrationsDepportonAcondition.1)ForloopSareIdealForiteratingOverSequencesLikelistSorarrays.2)whileLeleLooleSuitableApeableableableableableableforscenarioscenarioswhereTheLeTheLeTheLeTeLoopContinusunuesuntilaspecificiccificcificCondond

pythonisnotpuroly interpred; itosisehybridablectofbytecodecompilationandruntimeinterpretation.1)PythonCompiLessourceceCeceDintobyTecode,whitsthenexecececected bytybytybythepythepythepythonvirtirtualmachine(pvm).2)

concateNateListsinpythonwithTheSamelements,使用:1)operatototakeepduplicates,2)asettoremavelemavphicates,or3)listCompreanspearensionforcontroloverduplicates,每个methodhasdhasdifferentperferentperferentperforentperforentperforentperfortenceandordormplications。

pythonisanterpretedlanguage,offeringosofuseandflexibilitybutfacingperformancelanceLimitationsInCricapplications.1)drightingedlanguageslikeLikeLikeLikeLikeLikeLikeLikeThonexecuteline-by-line,允许ImmediaMediaMediaMediaMediaMediateFeedBackAndBackAndRapidPrototypiD.2)compiledLanguagesLanguagesLagagesLikagesLikec/c thresst

Useforloopswhenthenumberofiterationsisknowninadvance,andwhileloopswheniterationsdependonacondition.1)Forloopsareidealforsequenceslikelistsorranges.2)Whileloopssuitscenarioswheretheloopcontinuesuntilaspecificconditionismet,usefulforuserinputsoralgorit


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

WebStorm Mac版
好用的JavaScript开发工具

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)