搜索
首页后端开发Python教程Python实现各种排序算法的代码示例总结

在Python实践中,我们往往遇到排序问题,比如在对搜索结果打分的排序(没有排序就没有Google等搜索引擎的存在),当然,这样的例子数不胜数。《数据结构》也会花大量篇幅讲解排序。之前一段时间,由于需要,我复习了一下排序算法,并用Python实现了各种排序算法,放在这里作为参考。

最简单的排序有三种:插入排序,选择排序和冒泡排序。这三种排序比较简单,它们的平均时间复杂度均为O(n^2),在这里对原理就不加赘述了。贴出来源代码。

插入排序:

def insertion_sort(sort_list):
  iter_len = len(sort_list)
  if iter_len < 2:
    return sort_list
  for i in range(1, iter_len):
    key = sort_list[i]
    j = i - 1
    while j >= 0 and sort_list[j] > key:
      sort_list[j+1] = sort_list[j]
      j -= 1
    sort_list[j+1] = key
  return sort_list

冒泡排序:

def bubble_sort(sort_list):
  iter_len = len(sort_list)
  if iter_len < 2:
    return sort_list
  for i in range(iter_len-1):
    for j in range(iter_len-i-1):
      if sort_list[j] > sort_list[j+1]:
        sort_list[j], sort_list[j+1] = sort_list[j+1], sort_list[j]
  return sort_list

选择排序:

def selection_sort(sort_list):
  iter_len = len(sort_list)
  if iter_len < 2:
    return sort_list
  for i in range(iter_len-1):
    smallest = sort_list[i]
    location = i
    for j in range(i, iter_len):
      if sort_list[j] < smallest:
        smallest = sort_list[j]
        location = j
    if i != location:
      sort_list[i], sort_list[location] = sort_list[location], sort_list[i]
  return sort_list

这里我们可以看到这样的句子:

sort_list[i], sort_list[location] = sort_list[location], sort_list[i]
不了解Python的同学可能会觉得奇怪,没错,这是交换两个数的做法,通常在其他语言中如果要交换a与b的值,常常需要一个中间变量temp,首先把a赋给temp,然后把b赋给a,最后再把temp赋给b。但是在python中你就可以这么写:a, b = b, a,其实这是因为赋值符号的左右两边都是元组(这里需要强调的是,在python中,元组其实是由逗号“,”来界定的,而不是括号)。

平均时间复杂度为O(nlogn)的算法有:归并排序,堆排序和快速排序。

归并排序。对于一个子序列,分成两份,比较两份的第一个元素,小者弹出,然后重复这个过程。对于待排序列,以中间值分成左右两个序列,然后对于各子序列再递归调用。源代码如下,由于有工具函数,所以写成了callable的类:

class merge_sort(object):
  def _merge(self, alist, p, q, r):
    left = alist[p:q+1]
    right = alist[q+1:r+1]
    for i in range(p, r+1):
      if len(left) > 0 and len(right) > 0:
        if left[0] <= right[0]:
          alist[i] = left.pop(0)
        else:
          alist[i] = right.pop(0)
      elif len(right) == 0:
        alist[i] = left.pop(0)
      elif len(left) == 0:
        alist[i] = right.pop(0)

  def _merge_sort(self, alist, p, r):
    if p<r:
      q = int((p+r)/2)
      self._merge_sort(alist, p, q)
      self._merge_sort(alist, q+1, r)
      self._merge(alist, p, q, r)

  def __call__(self, sort_list):
    self._merge_sort(sort_list, 0, len(sort_list)-1)
    return sort_list

堆排序,是建立在数据结构——堆上的。关于堆的基本概念、以及堆的存储方式这里不作介绍。这里用一个列表来存储堆(和用数组存储类似),对于处在i位置的元素,2i+1位置上的是其左孩子,2i+2是其右孩子,类似得可以得出该元素的父元素。

首先我们写一个函数,对于某个子树,从根节点开始,如果其值小于子节点的值,就交换其值。用此方法来递归其子树。接着,我们对于堆的所有非叶节点,自下而上调用先前所述的函数,得到一个树,对于每个节点(非叶节点),它都大于其子节点。(其实这是建立最大堆的过程)在完成之后,将列表的头元素和尾元素调换顺序,这样列表的最后一位就是最大的数,接着在对列表的0到n-1部分再调用以上建立最大堆的过程。最后得到堆排序完成的列表。以下是源代码:

class heap_sort(object):
  def _left(self, i):
    return 2*i+1
  def _right(self, i):
    return 2*i+2
  def _parent(self, i):
    if i%2==1:
      return int(i/2)
    else:
      return i/2-1

  def _max_heapify(self, alist, i, heap_size=None):
    length = len(alist)

    if heap_size is None:
      heap_size = length

    l = self._left(i)
    r = self._right(i)

    if l < heap_size and alist[l] > alist[i]:
      largest = l
    else:
      largest = i
    if r < heap_size and alist[r] > alist[largest]:
      largest = r

    if largest!=i:
      alist[i], alist[largest] = alist[largest], alist[i]
      self._max_heapify(alist, largest, heap_size)

  def _build_max_heap(self, alist):
    roop_end = int(len(alist)/2)
    for i in range(0, roop_end)[::-1]:
      self._max_heapify(alist, i)

  def __call__(self, sort_list):
    self._build_max_heap(sort_list)
    heap_size = len(sort_list)
    for i in range(1, len(sort_list))[::-1]:
      sort_list[0], sort_list[i] = sort_list[i], sort_list[0]
      heap_size -= 1
      self._max_heapify(sort_list, 0, heap_size)

    return sort_list

最后一种要说明的交换排序算法(以上所有算法都为交换排序,原因是都需要通过两两比较交换顺序)自然就是经典的快速排序。

先来讲解一下原理。首先要用到的是分区工具函数(partition),对于给定的列表(数组),我们首先选择基准元素(这里我选择最后一个元素),通过比较,最后使得该元素的位置,使得这个运行结束的新列表(就地运行)所有在基准元素左边的数都小于基准元素,而右边的数都大于它。然后我们对于待排的列表,用分区函数求得位置,将列表分为左右两个列表(理想情况下),然后对其递归调用分区函数,直到子序列的长度小于等于1。

下面是快速排序的源代码:

class quick_sort(object):
  def _partition(self, alist, p, r):
    i = p-1
    x = alist[r]
    for j in range(p, r):
      if alist[j] <= x:
        i += 1
        alist[i], alist[j] = alist[j], alist[i]
    alist[i+1], alist[r] = alist[r], alist[i+1]
    return i+1

  def _quicksort(self, alist, p, r):
    if p < r:
      q = self._partition(alist, p, r)
      self._quicksort(alist, p, q-1)
      self._quicksort(alist, q+1, r)

  def __call__(self, sort_list):
    self._quicksort(sort_list, 0, len(sort_list)-1)
    return sort_list

细心的朋友在这里可能会发现一个问题,如果待排序列正好是顺序的时候,整个的递归将会达到最大递归深度(序列的长度)。而实际上在操作的时候,当列表长度大于1000(理论值)的时候,程序会中断,报超出最大递归深度的错误(maximum recursion depth exceeded)。在查过资料后我们知道,Python在默认情况下,最大递归深度为1000(理论值,其实真实情况下,只有995左右,各个系统这个值的大小也不同)。这个问题有两种解决方案,1)重新设置最大递归深度,采用以下方法设置:

import sys
sys.setrecursionlimit(99999)

2)第二种方法就是采用另外一个版本的分区函数,称为随机化分区函数。由于之前我们的选择都是子序列的最后一个数,因此对于特殊情况的健壮性就差了许多。现在我们随机从子序列选择基准元素,这样可以减少对特殊情况的差错率。新的randomize partition函数如下:

def _randomized_partition(self, alist, p, r):
  i = random.randint(p, r)
  alist[i], alist[r] = alist[r], alist[i]
  return self._partition(alist, p, r)

完整的randomize_quick_sort的代码如下(这里我直接继承之前的quick_sort类):

import random
class randomized_quick_sort(quick_sort):
  def _randomized_partition(self, alist, p, r):
    i = random.randint(p, r)
    alist[i], alist[r] = alist[r], alist[i]
    return self._partition(alist, p, r)

  def _quicksort(self, alist, p, r):
    if p<r:
      q = self._randomized_partition(alist, p, r)
      self._quicksort(alist, p, q-1)
      self._quicksort(alist, q+1, r)

关于快速排序的讨论还没有结束。我们都知道,Python是一门很优雅的语言,而Python写出来的代码是相当简洁而可读性极强的。这里就介绍快排的另一种写法,只需要三行就能够搞定,但是又不失阅读性。(当然,要看懂是需要一定的Python基础的)代码如下:

def quick_sort_2(sort_list):
  if len(sort_list)<=1:
    return sort_list
  return quick_sort_2([lt for lt in sort_list[1:] if lt<sort_list[0]]) + \
      sort_list[0:1] + \
      quick_sort_2([ge for ge in sort_list[1:] if ge>=sort_list[0]])

怎么样看懂了吧,这段代码出自《Python cookbook 第二版》,这种写法展示出了列表推导的强大表现力。

对于比较排序算法,我们知道,可以把所有可能出现的情况画成二叉树(决策树模型),对于n个长度的列表,其决策树的高度为h,叶子节点就是这个列表乱序的全部可能性为n!,而我们知道,这个二叉树的叶子节点不会超过2^h,所以有2^h>=n!,取对数,可以知道,h>=logn!,这个是近似于O(nlogn)。也就是说比较排序算法的最好性能就是O(nlgn)。

那有没有线性时间,也就是时间复杂度为O(n)的算法呢?答案是肯定的。不过由于排序在实际应用中算法其实是非常复杂的。这里只是讨论在一些特殊情形下的线性排序算法。特殊情形下的线性排序算法主要有计数排序,桶排序和基数排序。这里只简单说一下计数排序。

计数排序是建立在对待排序列这样的假设下:假设待排序列都是正整数。首先,声明一个新序列list2,序列的长度为待排序列中的最大数。遍历待排序列,对每个数,设其大小为i,list2[i]++,这相当于计数大小为i的数出现的次数。然后,申请一个list,长度等于待排序列的长度(这个是输出序列,由此可以看出计数排序不是就地排序算法),倒序遍历待排序列(倒排的原因是为了保持排序的稳定性,及大小相同的两个数在排完序后位置不会调换),假设当前数大小为i,list[list2[i]-1] = i,同时list2[i]自减1(这是因为这个大小的数已经输出一个,所以大小要自减)。于是,计数排序的源代码如下。

class counting_sort(object):
  def _counting_sort(self, alist, k):
    alist3 = [0 for i in range(k)]
    alist2 = [0 for i in range(len(alist))]
    for j in alist:
      alist3[j] += 1
    for i in range(1, k):
      alist3[i] = alist3[i-1] + alist3[i]
    for l in alist[::-1]:
      alist2[alist3[l]-1] = l
      alist3[l] -= 1
    return alist2

  def __call__(self, sort_list, k=None):
    if k is None:
      import heapq
      k = heapq.nlargest(1, sort_list)[0] + 1
    return self._counting_sort(sort_list, k)

各种排序算法介绍完(以上的代码都通过了我写的单元测试),我们再回到Python这个主题上来。其实Python从最早的版本开始,多次更换内置的排序算法。从开始使用C库提供的qsort例程(这个方法有相当多的问题),到后来自己开始实现自己的算法,包括2.3版本以前的抽样排序和折半插入排序的混合体,以及最新的适应性的排序算法,代码也由C语言的800行到1200行,以至于更多。从这些我们可以知道,在实际生产环境中,使用经典的排序算法是不切实际的,它们仅仅能做学习研究之用。而在实践中,更推荐的做法应该遵循以下两点:

当需要排序的时候,尽量设法使用内建Python列表的sort方法。
当需要搜索的时候,尽量设法使用内建的字典。
我写了测试函数,来比较内置的sort方法相比于以上方法的优越性。测试序列长度为5000,每个函数测试3次取平均值,可以得到以下的测试结果:

20151211165042473.png (530×165)

可以看出,Python内置函数是有很大的优势的。因此在实际应用时,我们应该尽量使用内置的sort方法。

由此,我们引出另外一个问题。怎么样判断一个序列中是否有重复元素,如果有返回True,没有返回False。有人会说,这不很简单么,直接写两个嵌套的迭代,遍历就是了。代码写下来应该是这样。

def normal_find_same(alist):
  length = len(alist)
  for i in range(length):
    for j in range(i+1, length):
      if alist[i] == alist[j]:
        return True
  return False

这种方法的代价是非常大的(平均时间复杂度是O(n^2),当列表中没有重复元素的时候会达到最坏情况),由之前的经验,我们可以想到,利用内置sort方法极快的经验,我们可以这么做:首先将列表排序,然后遍历一遍,看是否有重复元素。包括完整的测试代码如下:

import time
import random

def record_time(func, alist):
  start = time.time()
  func(alist)
  end = time.time()

  return end - start

def quick_find_same(alist):
  alist.sort()
  length = len(alist)
  for i in range(length-1):
    if alist[i] == alist[i+1]:
      return True
  return False

if __name__ == "__main__":
  methods = (normal_find_same, quick_find_same)
  alist = range(5000)
  random.shuffle(alist)

  for m in methods:
    print 'The method %s spends %s' % (m.__name__, record_time(m, alist))

运行以后我的数据是,对于5000长度,没有重复元素的列表,普通方法需要花费大约1.205秒,而快速查找法花费只有0.003秒。这就是排序在实际应用中的一个例子。

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python vs. C:了解关键差异Python vs. C:了解关键差异Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python vs.C:您的项目选择哪种语言?Python vs.C:您的项目选择哪种语言?Apr 21, 2025 am 12:17 AM

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

达到python目标:每天2小时的力量达到python目标:每天2小时的力量Apr 20, 2025 am 12:21 AM

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

最大化2小时:有效的Python学习策略最大化2小时:有效的Python学习策略Apr 20, 2025 am 12:20 AM

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

在Python和C之间进行选择:适合您的语言在Python和C之间进行选择:适合您的语言Apr 20, 2025 am 12:20 AM

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python与C:编程语言的比较分析Python与C:编程语言的比较分析Apr 20, 2025 am 12:14 AM

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天2小时:Python学习的潜力每天2小时:Python学习的潜力Apr 20, 2025 am 12:14 AM

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版