搜索
首页后端开发Python教程一波神奇的Python语句、函数与方法的使用技巧总结

显示有限的接口到外部
当发布python第三方package时,并不希望代码中所有的函数或者class可以被外部import,在__init__.py中添加__all__属性,该list中填写可以import的类或者函数名, 可以起到限制的import的作用, 防止外部import其他函数或者类。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
from base import APIBase
from client import Client
from decorator import interface, export, stream
from server import Server
from storage import Storage
from util import (LogFormatter, disable_logging_to_stderr,
            enable_logging_to_kids, info)
__all__ = ['APIBase', 'Client', 'LogFormatter', 'Server',
      'Storage', 'disable_logging_to_stderr', 'enable_logging_to_kids',
      'export', 'info', 'interface', 'stream']

with的魔力
with语句需要支持上下文管理协议的对象, 上下文管理协议包含__enter__和__exit__两个方法。 with语句建立运行时上下文需要通过这两个方法执行进入和退出操作。

其中上下文表达式是跟在with之后的表达式, 该表达式返回一个上下文管理对象。

# 常见with使用场景
with open("test.txt", "r") as my_file: # 注意, 是__enter__()方法的返回值赋值给了my_file,
  for line in my_file:
    print line

知道具体原理,我们可以自定义支持上下文管理协议的类,类中实现__enter__和__exit__方法。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
class MyWith(object):
  def __init__(self):
    print "__init__ method"
  def __enter__(self):
    print "__enter__ method"
    return self # 返回对象给as后的变量
  def __exit__(self, exc_type, exc_value, exc_traceback):
    print "__exit__ method"
    if exc_traceback is None:
      print "Exited without Exception"
      return True
    else:
      print "Exited with Exception"
      return False
def test_with():
  with MyWith() as my_with:
    print "running my_with"
  print "------分割线-----"
  with MyWith() as my_with:
    print "running before Exception"
    raise Exception
    print "running after Exception"
if __name__ == '__main__':
  test_with()

执行结果如下:

__init__ method
__enter__ method
running my_with
__exit__ method
Exited without Exception
------分割线-----
__init__ method
__enter__ method
running before Exception
__exit__ method
Exited with Exception
Traceback (most recent call last):
 File "bin/python", line 34, in <module>
  exec(compile(__file__f.read(), __file__, "exec"))
 File "test_with.py", line 33, in <module>
  test_with()
 File "test_with.py", line 28, in test_with
  raise Exception
Exception

证明了会先执行__enter__方法, 然后调用with内的逻辑, 最后执行__exit__做退出处理, 并且, 即使出现异常也能正常退出

filter的用法
相对filter而言, map和reduce使用的会更频繁一些, filter正如其名字, 按照某种规则过滤掉一些元素。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
lst = [1, 2, 3, 4, 5, 6]
# 所有奇数都会返回True, 偶数会返回False被过滤掉
print filter(lambda x: x % 2 != 0, lst)
#输出结果
[1, 3, 5]

一行作判断
当条件满足时, 返回的为等号后面的变量, 否则返回else后语句。

lst = [1, 2, 3]
new_lst = lst[0] if lst is not None else None
print new_lst
# 打印结果
1

装饰器之单例
使用装饰器实现简单的单例模式

# 单例装饰器
def singleton(cls):
  instances = dict() # 初始为空
  def _singleton(*args, **kwargs):
    if cls not in instances: #如果不存在, 则创建并放入字典
      instances[cls] = cls(*args, **kwargs)
    return instances[cls]
  return _singleton
@singleton
class Test(object):
  pass
if __name__ == '__main__':
  t1 = Test()
  t2 = Test()
  # 两者具有相同的地址
  print t1, t2

staticmethod装饰器
类中两种常用的装饰, 首先区分一下他们:

普通成员函数, 其中第一个隐式参数为对象

  • classmethod装饰器, 类方法(给人感觉非常类似于OC中的类方法), 其中第一个隐式参数为类
  • staticmethod装饰器, 没有任何隐式参数. python中的静态方法类似与C++中的静态方法
#!/usr/bin/env python

# -*- coding: utf-8 -*-
class A(object):
  # 普通成员函数
  def foo(self, x):
    print "executing foo(%s, %s)" % (self, x)
  @classmethod  # 使用classmethod进行装饰
  def class_foo(cls, x):
    print "executing class_foo(%s, %s)" % (cls, x)
  @staticmethod # 使用staticmethod进行装饰
  def static_foo(x):
    print "executing static_foo(%s)" % x
def test_three_method():
  obj = A()
  # 直接调用噗通的成员方法
  obj.foo("para") # 此处obj对象作为成员函数的隐式参数, 就是self
  obj.class_foo("para") # 此处类作为隐式参数被传入, 就是cls
  A.class_foo("para") #更直接的类方法调用
  obj.static_foo("para") # 静态方法并没有任何隐式参数, 但是要通过对象或者类进行调用
  A.static_foo("para")
if __name__ == '__main__':
  test_three_method()
  
# 函数输出
executing foo(<__main__.A object at 0x100ba4e10>, para)
executing class_foo(<class '__main__.A'>, para)
executing class_foo(<class '__main__.A'>, para)
executing static_foo(para)
executing static_foo(para)

property装饰器
定义私有类属性
将property与装饰器结合实现属性私有化(更简单安全的实现get和set方法)。

#python内建函数
property(fget=None, fset=None, fdel=None, doc=None)

fget是获取属性的值的函数,fset是设置属性值的函数,fdel是删除属性的函数,doc是一个字符串(像注释一样)。从实现来看,这些参数都是可选的。

property有三个方法getter(), setter()和delete() 来指定fget, fset和fdel。 这表示以下这行:

class Student(object):
  @property #相当于property.getter(score) 或者property(score)
  def score(self):
    return self._score
  @score.setter #相当于score = property.setter(score)
  def score(self, value):
    if not isinstance(value, int):
      raise ValueError('score must be an integer!')
    if value < 0 or value > 100:
      raise ValueError('score must between 0 ~ 100!')
    self._score = value

iter魔法
通过yield和__iter__的结合,我们可以把一个对象变成可迭代的
通过__str__的重写, 可以直接通过想要的形式打印对象

#!/usr/bin/env python
# -*- coding: utf-8 -*-
class TestIter(object):
  def __init__(self):
    self.lst = [1, 2, 3, 4, 5]
  def read(self):
    for ele in xrange(len(self.lst)):
      yield ele
  def __iter__(self):
    return self.read()
  def __str__(self):
    return ','.join(map(str, self.lst))
  
  __repr__ = __str__
def test_iter():
  obj = TestIter()
  for num in obj:
    print num
  print obj
if __name__ == '__main__':
  test_iter()

神奇partial
partial使用上很像C++中仿函数(函数对象)。

在stackoverflow给出了类似与partial的运行方式:

def partial(func, *part_args):
  def wrapper(*extra_args):
    args = list(part_args)
    args.extend(extra_args)
    return func(*args)
  return wrapper

利用用闭包的特性绑定预先绑定一些函数参数,返回一个可调用的变量, 直到真正的调用执行:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
from functools import partial
def sum(a, b):
  return a + b
def test_partial():
  fun = partial(sum, 2)  # 事先绑定一个参数, fun成为一个只需要一个参数的可调用变量
  print fun(3) # 实现执行的即是sum(2, 3)
if __name__ == '__main__':
  test_partial()
  
# 执行结果
5

神秘eval
eval我理解为一种内嵌的python解释器(这种解释可能会有偏差), 会解释字符串为对应的代码并执行, 并且将执行结果返回。

看一下下面这个例子:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
def test_first():
  return 3
def test_second(num):
  return num
action = { # 可以看做是一个sandbox
    "para": 5,
    "test_first" : test_first,
    "test_second": test_second
    }
def test_eavl(): 
  condition = "para == 5 and test_second(test_first) > 5"
  res = eval(condition, action) # 解释condition并根据action对应的动作执行
  print res
if __name__ == '_

exec
exec在Python中会忽略返回值, 总是返回None, eval会返回执行代码或语句的返回值
exec和eval在执行代码时, 除了返回值其他行为都相同
在传入字符串时, 会使用compile(source, '', mode)编译字节码。 mode的取值为exec和eval

#!/usr/bin/env python
# -*- coding: utf-8 -*-
def test_first():
  print "hello"
def test_second():
  test_first()
  print "second"
def test_third():
  print "third"
action = {
    "test_second": test_second,
    "test_third": test_third
    }
def test_exec():
  exec "test_second" in action
if __name__ == '__main__':
  test_exec() # 无法看到执行结果

getattr
getattr(object, name[, default])返回对象的命名属性,属性名必须是字符串。如果字符串是对象的属性名之一,结果就是该属性的值。例如, getattr(x, ‘foobar') 等价于 x.foobar。 如果属性名不存在,如果有默认值则返回默认值,否则触发 AttributeError 。

# 使用范例
class TestGetAttr(object):
  test = "test attribute"
  def say(self):
    print "test method"
def test_getattr():
  my_test = TestGetAttr()
  try:
    print getattr(my_test, "test")
  except AttributeError:
    print "Attribute Error!"
  try:
    getattr(my_test, "say")()
  except AttributeError: # 没有该属性, 且没有指定返回值的情况下
    print "Method Error!"
if __name__ == '__main__':
  test_getattr()
  
# 输出结果
test attribute
test method

命令行处理

def process_command_line(argv):
  """
  Return a 2-tuple: (settings object, args list).
  `argv` is a list of arguments, or `None` for ``sys.argv[1:]``.
  """
  if argv is None:
    argv = sys.argv[1:]
  # initialize the parser object:
  parser = optparse.OptionParser(
    formatter=optparse.TitledHelpFormatter(width=78),
    add_help_option=None)
  # define options here:
  parser.add_option(   # customized description; put --help last
    '-h', '--help', action='help',
    help='Show this help message and exit.')
  settings, args = parser.parse_args(argv)
  # check number of arguments, verify values, etc.:
  if args:
    parser.error('program takes no command-line arguments; '
           '"%s" ignored.' % (args,))
  # further process settings & args if necessary
  return settings, args
def main(argv=None):
  settings, args = process_command_line(argv)
  # application code here, like:
  # run(settings, args)
  return 0    # success
if __name__ == '__main__':
  status = main()
  sys.exit(status)

读写csv文件

# 从csv中读取文件, 基本和传统文件读取类似
import csv
with open('data.csv', 'rb') as f:
  reader = csv.reader(f)
  for row in reader:
    print row
# 向csv文件写入
import csv
with open( 'data.csv', 'wb') as f:
  writer = csv.writer(f)
  writer.writerow(['name', 'address', 'age']) # 单行写入
  data = [
      ( 'xiaoming ','china','10'),
      ( 'Lily', 'USA', '12')]
  writer.writerows(data) # 多行写入
各种时间形式转换
只发一张网上的图, 然后查文档就好了, 这个是记不住的

2015128155735251.jpg (739×549)

字符串格式化
一个非常好用, 很多人又不知道的功能:

>>> name = "andrew"
>>> "my name is {name}".format(name=name)
'my name is andrew'

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python和时间:充分利用您的学习时间Python和时间:充分利用您的学习时间Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python:游戏,Guis等Python:游戏,Guis等Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python vs.C:申请和用例Python vs.C:申请和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时的Python计划:一种现实的方法2小时的Python计划:一种现实的方法Apr 11, 2025 am 12:04 AM

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python:探索其主要应用程序Python:探索其主要应用程序Apr 10, 2025 am 09:41 AM

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

您可以在2小时内学到多少python?您可以在2小时内学到多少python?Apr 09, 2025 pm 04:33 PM

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础?如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础?Apr 02, 2025 am 07:18 AM

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到?如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。