搜索
首页后端开发Python教程详解Python验证码识别

以前写过一个刷校内网的人气的工具,Java的(以后再也不行Java程序了),里面用到了验证码识别,那段代码不是我自己写的:-) 校内的验证是完全单色没有任何干挠的验证码,识别起来比较容易,不过从那段代码中可以看到基本的验证码识别方式。这几天在写一个程序的时候需要识别验证码,因为程序是Python写的自然打算用Python进行验证码的识别。

以前没用Python处理过图像,不太了解PIL(Python Image Library)的用法,这几天看了看PIL,发现它太强大了,简直和ImageMagic,PS可以相比了。(这里有PIL不错的文档)

由于上面的验证码是24位的jpeg图像,并且包含了噪点,所以我们要做的就是去噪和去色,我拿PS找了张验证码试了试,使用PS滤镜中的去噪效果还行, 但是没有在PIL找到去噪的函数,后来发现中值过滤后可以去掉大部分的噪点,而且PIL里有现成的函数,接下来我试着直接把图像转换为单色,结果发现还是 会有不过的噪点留了下来,因为中值过滤时把不少噪点淡化了,但转换为音色时这些噪点又被强化显示了,于是在中值过滤后对图像亮度进行加强处理,然后再转换 为单色,这样验证码图片就变得比较容易识别了:

上面这些处理使用Python才几行:

im = Image.open(image_name)
im = im.filter(ImageFilter.MedianFilter())
enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
im.show()

接下来就是提取这些数字的字模,使用shell脚本下载100幅图片,抽出三张图片获取字模:

#!/usr/bin/env python
#encoding=utf-8
import Image,ImageEnhance,ImageFilter
import sys
image_name = "./images/81.jpeg"
im = Image.open(image_name)
im = im.filter(ImageFilter.MedianFilter())
enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
#im.show()
#all by pixel
s = 12 #start postion of first number
w = 10 #width of each number
h = 15 #end postion from top
t = 2 #start postion of top
im_new = []
#split four numbers in the picture
for i in range(4):
im1 = im.crop((s+w*i+i*2,t,s+w*(i+1)+i*2,h))
im_new.append(im1)
f = file("data.txt","a")
for k in range(4):
l = []
#im_new[k].show()
for i in range(13):
for j in range(10):
if (im_new[k].getpixel((j,i)) == 255):
l.append(0)
else:
l.append(1)
f.write("l=[")
n = 0
for i in l:
if (n%10==0):
f.write("/n")
f.write(str(i)+",")
n+=1
f.write("]/n")

把字模保存为list,用于接下来的匹配;

提取完字模后剩下来的就是对需要处理的图片进行与数据库中的字模进行匹配了,基本的思路就是看相应点的重合率,但是由于噪点的影响在对(6,8) (8,3)(5,9)的匹配时容易出错,俺自己针对已有的100幅图片数据采集进行分析,采用了双向匹配(图片与字模分别作为基点),做了半天的测试终于 可以实现100%的识别率。

#!/usr/bin/env python
#encoding=utf-8
import Image,ImageEnhance,ImageFilter
import Data
DEBUG = False
def d_print(*msg):
global DEBUG
if DEBUG:
for i in msg:
print i,
print
else:
pass
def Get_Num(l=[]):
min1 = []
min2 = []
for n in Data.N:
count1=count2=count3=count4=0
if (len(l) != len(n)):
print "Wrong pic"
exit()
for i in range(len(l)):
if (l[i] == 1):
count1+=1
if (n[i] == 1):
count2+=1
for i in range(len(l)):
if (n[i] == 1):
count3+=1
if (l[i] == 1):
count4+=1
d_print(count1,count2,count3,count4)
min1.append(count1-count2)
min2.append(count3-count4)
d_print(min1,"/n",min2)
for i in range(10):
if (min1[i] <= 2 or min2[i] <= 2):
if ((abs(min1[i] - min2[i])) <10):
return i
for i in range(10): 
if (min1[i] <= 4 or min2[i] <= 4):
if (abs(min1[i] - min2[i]) <= 2):
return i
for i in range(10):
flag = False
if (min1[i] <= 3 or min2[i] <= 3):
for j in range(10):
if (j != i and (min1[j] <5 or min2[j] <5)):
flag = True
else:
pass
if (not flag):
return i
for i in range(10): 
if (min1[i] <= 5 or min2[i] <= 5):
if (abs(min1[i] - min2[i]) <= 10):
return i
for i in range(10):
if (min1[i] <= 10 or min2[i] <= 10):
if (abs(min1[i] - min2[i]) <= 3):
return i
#end of function Get_Num
def Pic_Reg(image_name=None):
im = Image.open(image_name)
im = im.filter(ImageFilter.MedianFilter())
enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
im.show()
#all by pixel
s = 12 #start postion of first number
w = 10 #width of each number
h = 15 #end postion from top
t = 2 #start postion of top
im_new = []
#split four numbers in the picture
for i in range(4):
im1 = im.crop((s+w*i+i*2,t,s+w*(i+1)+i*2,h))
im_new.append(im1)
s = ""
for k in range(4):
l = []
#im_new[k].show()
for i in range(13):
for j in range(10):
if (im_new[k].getpixel((j,i)) == 255):
l.append(0)
else:
l.append(1)
s+=str(Get_Num(l))
return s
print Pic_Reg("./images/22.jpeg")

这里再提一下验证码识别的基本方法:截图,二值化、中值滤波去噪、分割、紧缩重排(让高矮统一)、字库特征匹配识别。
这里只是针对一般的验证码,高级验证码的识别这里有篇不错的文章,太复杂的话涉及的东西就多了,那俺就没兴趣了,人工智能(好恐怖),俺只喜欢简单的东西。

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
科学计算的Python:详细的外观科学计算的Python:详细的外观Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python和C:找到合适的工具Python和C:找到合适的工具Apr 19, 2025 am 12:04 AM

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

数据科学和机器学习的Python数据科学和机器学习的PythonApr 19, 2025 am 12:02 AM

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

python在行动中:现实世界中的例子python在行动中:现实世界中的例子Apr 18, 2025 am 12:18 AM

Python在现实世界中的应用包括数据分析、Web开发、人工智能和自动化。1)在数据分析中,Python使用Pandas和Matplotlib处理和可视化数据。2)Web开发中,Django和Flask框架简化了Web应用的创建。3)人工智能领域,TensorFlow和PyTorch用于构建和训练模型。4)自动化方面,Python脚本可用于复制文件等任务。

Python的主要用途:综合概述Python的主要用途:综合概述Apr 18, 2025 am 12:18 AM

Python在数据科学、Web开发和自动化脚本领域广泛应用。1)在数据科学中,Python通过NumPy、Pandas等库简化数据处理和分析。2)在Web开发中,Django和Flask框架使开发者能快速构建应用。3)在自动化脚本中,Python的简洁性和标准库使其成为理想选择。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器