搜索
首页后端开发Python教程使用Python编写基于DHT协议的BT资源爬虫

关于DHT协议

DHT协议作为BT协议的一个辅助,是非常好玩的。它主要是为了在BT正式下载时得到种子或者BT资源。传统的网络,需要一台中央服务器存放种子或者BT资源,不仅浪费服务器资源,还容易出现单点的各种问题,而DHT网络则是为了去中心化,也就是说任意时刻,这个网络总有节点是亮的,你可以去询问问这些亮的节点,从而将自己加入DHT网络。

要实现DHT协议的网络爬虫,主要分3步,第一步是得到资源信息(infohash,160bit,20字节,可以编码为40字节的十六进制字符串),第二步是确认这些infohash是有效的,第三步是通过有效的infohash下载到BT的种子文件,从而得到对这个资源的完整描述。

其中第一步是其他节点用DHT协议中的get_peers方法向爬虫发送请求得到的,第二步是其他节点用DHT协议中的announce_peer向爬虫发送请求得到的,第三步可以有几种方式得到,比如可以去一些保存种子的网站根据infohash直接下载到,或者通过announce_peer的节点来下载到,具体如何实现,可以取决于你自己的爬虫。

DHT协议中的主要几个操作:

主要负责通过UDP与外部节点交互,封装4种基本操作的请求以及相应。

ping:检查一个节点是否“存活”

在一个爬虫里主要有两个地方用到ping,第一是初始路由表时,第二是验证节点是否存活时

find_node:向一个节点发送查找节点的请求

在一个爬虫中主要也是两个地方用到find_node,第一是初始路由表时,第二是验证桶是否存活时

get_peers:向一个节点发送查找资源的请求

在爬虫中有节点向自己请求时不仅像个正常节点一样做出回应,还需要以此资源的info_hash为机会尽可能多的去认识更多的节点。如图,get_peers实际上最后一步是announce_peer,但是因为爬虫不能announce_peer,所以实际上get_peers退化成了find_node操作。

2016319114959666.png (204×120)

announce_peer:向一个节点发送自己已经开始下载某个资源的通知

爬虫中不能用announce_peer,因为这就相当于通报虚假资源,对方很容易从上下文中判断你是否通报了虚假资源从而把你禁掉。

基于Python的DHT爬虫
修改自github开源爬虫,原作者名字有些。。,这里直接将项目地址列出:https://github.com/Fuck-You-GFW/simDHT,有github帐号的请给原作者star,后续我将结果放入db,外加用tornado做一个简单的查询界面出来放在github上,先备份一下代码

#!/usr/bin/env python
# encoding: utf-8

import socket
from hashlib import sha1
from random import randint
from struct import unpack
from socket import inet_ntoa
from threading import Timer, Thread
from time import sleep
from collections import deque

from bencode import bencode, bdecode

BOOTSTRAP_NODES = (
  ("router.bittorrent.com", 6881),
  ("dht.transmissionbt.com", 6881),
  ("router.utorrent.com", 6881)
)
TID_LENGTH = 2
RE_JOIN_DHT_INTERVAL = 3
TOKEN_LENGTH = 2


def entropy(length):
  return "".join(chr(randint(0, 255)) for _ in xrange(length))


def random_id():
  h = sha1()
  h.update(entropy(20))
  return h.digest()


def decode_nodes(nodes):
  n = []
  length = len(nodes)
  if (length % 26) != 0:
    return n

  for i in range(0, length, 26):
    nid = nodes[i:i+20]
    ip = inet_ntoa(nodes[i+20:i+24])
    port = unpack("!H", nodes[i+24:i+26])[0]
    n.append((nid, ip, port))

  return n


def timer(t, f):
  Timer(t, f).start()


def get_neighbor(target, nid, end=10):
  return target[:end]+nid[end:]


class KNode(object):

  def __init__(self, nid, ip, port):
    self.nid = nid
    self.ip = ip
    self.port = port


class DHTClient(Thread):

  def __init__(self, max_node_qsize):
    Thread.__init__(self)
    self.setDaemon(True)
    self.max_node_qsize = max_node_qsize
    self.nid = random_id()
    self.nodes = deque(maxlen=max_node_qsize)

  def send_krpc(self, msg, address):
    try:
      self.ufd.sendto(bencode(msg), address)
    except Exception:
      pass

  def send_find_node(self, address, nid=None):
    nid = get_neighbor(nid, self.nid) if nid else self.nid
    tid = entropy(TID_LENGTH)
    msg = {
      "t": tid,
      "y": "q",
      "q": "find_node",
      "a": {
        "id": nid,
        "target": random_id()
      }
    }
    self.send_krpc(msg, address)

  def join_DHT(self):
    for address in BOOTSTRAP_NODES:
      self.send_find_node(address)

  def re_join_DHT(self):
    if len(self.nodes) == 0:
      self.join_DHT()
    timer(RE_JOIN_DHT_INTERVAL, self.re_join_DHT)

  def auto_send_find_node(self):
    wait = 1.0 / self.max_node_qsize
    while True:
      try:
        node = self.nodes.popleft()
        self.send_find_node((node.ip, node.port), node.nid)
      except IndexError:
        pass
      sleep(wait)

  def process_find_node_response(self, msg, address):
    nodes = decode_nodes(msg["r"]["nodes"])
    for node in nodes:
      (nid, ip, port) = node
      if len(nid) != 20: continue
      if ip == self.bind_ip: continue
      if port < 1 or port > 65535: continue
      n = KNode(nid, ip, port)
      self.nodes.append(n)


class DHTServer(DHTClient):

  def __init__(self, master, bind_ip, bind_port, max_node_qsize):
    DHTClient.__init__(self, max_node_qsize)

    self.master = master
    self.bind_ip = bind_ip
    self.bind_port = bind_port

    self.process_request_actions = {
      "get_peers": self.on_get_peers_request,
      "announce_peer": self.on_announce_peer_request,
    }

    self.ufd = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP)
    self.ufd.bind((self.bind_ip, self.bind_port))

    timer(RE_JOIN_DHT_INTERVAL, self.re_join_DHT)


  def run(self):
    self.re_join_DHT()
    while True:
      try:
        (data, address) = self.ufd.recvfrom(65536)
        msg = bdecode(data)
        self.on_message(msg, address)
      except Exception:
        pass

  def on_message(self, msg, address):
    try:
      if msg["y"] == "r":
        if msg["r"].has_key("nodes"):
          self.process_find_node_response(msg, address)
      elif msg["y"] == "q":
        try:
          self.process_request_actions[msg["q"]](msg, address)
        except KeyError:
          self.play_dead(msg, address)
    except KeyError:
      pass

  def on_get_peers_request(self, msg, address):
    try:
      infohash = msg["a"]["info_hash"]
      tid = msg["t"]
      nid = msg["a"]["id"]
      token = infohash[:TOKEN_LENGTH]
      msg = {
        "t": tid,
        "y": "r",
        "r": {
          "id": get_neighbor(infohash, self.nid),
          "nodes": "",
          "token": token
        }
      }
      self.send_krpc(msg, address)
    except KeyError:
      pass

  def on_announce_peer_request(self, msg, address):
    try:
      infohash = msg["a"]["info_hash"]
      #print msg["a"]
      tname = msg["a"]["name"]
      token = msg["a"]["token"]
      nid = msg["a"]["id"]
      tid = msg["t"]

      if infohash[:TOKEN_LENGTH] == token:
        if msg["a"].has_key("implied_port") and msg["a"]["implied_port"] != 0:
          port = address[1]
        else:
          port = msg["a"]["port"]
          if port < 1 or port > 65535: return
        self.master.log(infohash, (address[0], port),tname)
    except Exception:
      pass
    finally:
      self.ok(msg, address)

  def play_dead(self, msg, address):
    try:
      tid = msg["t"]
      msg = {
        "t": tid,
        "y": "e",
        "e": [202, "Server Error"]
      }
      self.send_krpc(msg, address)
    except KeyError:
      pass

  def ok(self, msg, address):
    try:
      tid = msg["t"]
      nid = msg["a"]["id"]
      msg = {
        "t": tid,
        "y": "r",
        "r": {
          "id": get_neighbor(nid, self.nid)
        }
      }
      self.send_krpc(msg, address)
    except KeyError:
      pass


class Master(object):
  def log(self, infohash,address=None,tname=None):
    hexinfohash = infohash.encode("hex")
    print "info_hash is: %s,name is: %s from %s:%s" % (
      hexinfohash,tname, address[0], address[1]
  )
    print "magnet:&#63;xt=urn:btih:%s&dn=%s" % (hexinfohash, tname)


# using example
if __name__ == "__main__":
  # max_node_qsize bigger, bandwith bigger, speed higher
  dht = DHTServer(Master(), "0.0.0.0", 6882, max_node_qsize=200)
  dht.start()
  dht.auto_send_find_node()

PS:  DHT协议中有几个重点的需要澄清的地方:

1. node与infohash同样使用160bit的表示方式,160bit意味着整个节点空间有2^160 = 730750818665451459101842416358141509827966271488,是48位10进制,也就是说有百亿亿亿亿亿个节点空间,这么大的节点空间,是足够存放你的主机节点以及任意的资源信息的。

2. 每个节点有张路由表。每张路由表由一堆K桶组成,所谓K桶,就是桶中最多只能放K个节点,默认是8个。而桶的保存则是类似一颗前缀树的方式。相当于一张8桶的路由表中最多有160-4个K桶。

3. 根据DHT协议的规定,每个infohash都是有位置的,因此,两个infohash之间就有距离一说,而两个infohash的距离就可以用异或来表示,即infohash1 xor infohash2,也就是说,高位一样的话,他们的距离就近,反之则远,这样可以快速的计算两个节点的距离。计算这个距离有什么用呢,在DHT网络中,如果一个资源的infohash与一个节点的infohash越近则该节点越有可能拥有该资源的信息,为什么呢?可以想象,因为人人都用同样的距离算法去递归的询问离资源接近的节点,并且只要该节点做出了回应,那么就会得到一个announce信息,也就是说跟资源infohash接近的节点就有更大的概率拿到该资源的infohash

4. 根据上述算法,DHT中的查询是跳跃式查询,可以迅速的跨越的的节点桶而接近目标节点桶。之所以在远处能够大幅度跳跃,而在近处只能小幅度跳跃,原因是每个节点的路由表中离自身越接近的节点保存得越多,如下图

2016319115044824.jpg (490×417)

5. 在一个DHT网络中当爬虫并不容易,不像普通爬虫一样,看到资源就可以主动爬下来,相反,因为得到资源的方式(get_peers, announce_peer)都是被动的,所以爬虫的方式就有些变化了,爬虫所要做的事就是像个正常节点一样去响应其他节点的查询,并且得到其他节点的回应,把其中的数据收集下来就算是完成工作了。而爬虫唯一能做的,是尽可能的去多认识其他节点,这样,才能有更多其他节点来向你询问。

6. 有人说,那么我把DHT爬虫的K桶中的容量K增大是不是就能增加得到资源的机会,其实不然,之前也分析过了,DHT爬虫最重要的信息来源全是被动的,因为你不能增大别人的K,所以距离远的节点保存你自身的概率就越小,当然距离远的节点去请求你的概率相对也比较小。

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。