我们将要来学习python的重要概念迭代和迭代器,通过简单实用的例子如列表迭代器和xrange。
可迭代
一个对象,物理或者虚拟存储的序列。list,tuple,strins,dicttionary,set以及生成器对象都是可迭代的,整型数是不可迭代的。如果你不确定哪个可迭代哪个不可以,你需要用python内建的iter()来帮忙。
>>> iter([1,2,3]) <listiterator object at 0x026C8970> >>> iter({1:2, 2:4}) <dictionary-keyiterator object at 0x026CC1B0> >>> iter(1234) Traceback (most recent call last): File "<pyshell#145>", line 1, in <module> iter(1234) TypeError: 'int' object is not iterable
iter()为list返回了listiterator对象,为dictionary返回了dictionary-keyiterator对象。类似对其他可迭代类型也会返回迭代器对象。
iter()用在自定义的类型会怎样呢?我们先自己定义一个String类:
class String(object): def __init__(self, val): self.val = val def __str__(self): return self.val st = String('sample string')
那么,st是可迭代的吗?
>>> iter(st) TypeError: 'String' object is not iterable
你可能会有几个问题要问:
怎么让自定义的类型可迭代?
iter()究竟做了些什么?
让我们补充String类来找找答案
class String(object): def __init__(self, val): self.val = val def __str__(self): return self.val def __iter__(self): print "This is __iter__ method of String class" return iter(self.val) #self.val is python string so iter() will return it's iterator >>> st = String('Sample String') >>> iter(st) This is __iter__ method of String class <iterator object at 0x026C8150>
在String类中需要一个'__iter__'方法把String类型变成可迭代的,这就是说'iter'内部调用了'iterable.__iter__()'
别急,不是只有增加'__iter()'方法这一种途径
class String(object): def __init__(self, val): self.val = val def __str__(self): return self.val def __getitem__(self, index): return self.val[index] >>> st = String('Sample String') >>> iter(st) <iterator object at 0x0273AC10>
‘itr'也会调用'iterable.__getitem__()',所以我们用'__getitem__'方法让String类型可迭代。
如果在String类中同时使用'__iter__()'和'__getitem__()',就只有'__iter__'会起作用。
自动迭代
for循环会自动迭代
for x in iterable: print x
我们可以不用for循环来实现吗?
def iterate_while(iterable): index = 0 while(i< len(iterable)): print iterable[i] i +=1
这样做对list和string是管用的,但对dictionary不会奏效,所以这绝对不是python式的迭代,也肯定不能模拟for循环的功能。我们先看迭代器,等下回再过头来。
迭代器
关于迭代器先说几条………..
1. 迭代器对象在迭代过程中会会产生可迭代的值,`next()`或者`__next()__`是迭代器用来产生下一个值的方法。
2. 它会在迭代结束后发出StopIteration异常。
3. `iter()`函数返回迭代器对象
4. 如果`iter()`函数被用在迭代器对象,它会返回对象本身
我们试一试模仿for循环
def simulate_for_loop(iterable): it = iter(iterable) while(True): try: print next(it) except StopIteration: break >>> simulate_for_loop([23,12,34,56]) 23 12 34 56
前面我们看过了iterable类,我们知道iter会返回迭代器对象。
现在我们试着理解迭代器类的设计。
class Iterator: def __init__(self, iterable) self.iterable = iterable . . def __iter__(self): #iter should return self if called on iterator return self def next(self): #Use __next__() in python 3.x if condition: #it should raise StopIteration exception if no next element is left to return raise StopIteration
我们学了够多的迭代和迭代器,在python程序中不会用到比这更深的了。
但是为了学习的目的我们就到这儿。。。。
列表迭代器
你可能会在面试中写这个,所以打起精神来注意了
class list_iter(object): def __init__(self, list_data): self.list_data = list_data self.index = 0 def __iter__(self): return self def next(self): #Use __next__ in python 3.x if self.index < len(self.list_data): val = self.list_data[self.index] self.index += 1 return val else: raise StopIteration()
我们来用`list_iter`自己定义一个列表迭代器
class List(object): def __init__(self, val): self.val = val def __iter__(self): return list_iter(self.val) >>> ls = List([1,2,34]) >>> it = iter(ls) >>> next(it) 1 >>> next(it) 2 >>> next(it) 34 >>> next(it) Traceback (most recent call last): File "<pyshell#254>", line 1, in <module> next(it) File "<pyshell#228>", line 13, in next raise StopIteration() StopIteration
xrange
从一个问题开始——xrange是迭代还是迭代器?
我们来看看
>>> x = xrange(10) >>> type(x) <type 'xrange'>
几个关键点:
1. `iter(xrange(num))`应该被支持
2. 如果`iter(xrange(num))`返回同样的对象(xrange类型)那xrange就是迭代器
3. 如果`iter(xrange(num))`返回一个迭代器对象那xrange就是迭代
>>> iter(xrange(10)) <rangeiterator object at 0x0264EFE0>
它返回了rangeiterator,所以我们完全可以叫它迭代器。
让我们用最少的xrange函数实现自己的xrange
xrange_iterator
class xrange_iter(object): def __init__(self, num): self.num = num self.start = 0 def __iter__(self): return self def next(self): if self.start < self.num: val = self.start self.start += 1 return val else: raise StopIteration()
my xrange
class my_xrange(object): def __init__(self, num): self.num = num def __iter__(self): return xrange_iter(self.num) >>> for x in my_xrange(10): print x, 0 1 2 3 4 5 6 7 8 9
以上就是本文的全部内容,希望对大家学习掌握Python迭代和迭代器有所帮助。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

禅工作室 13.0.1
功能强大的PHP集成开发环境

SublimeText3 Linux新版
SublimeText3 Linux最新版

Atom编辑器mac版下载
最流行的的开源编辑器

SublimeText3 英文版
推荐:为Win版本,支持代码提示!