基本思想:从未排序的序列中找到一个最小的元素,放到第一位,再从剩余未排序的序列中找到最小的元素,放到第二位,依此类推,直到所有元素都已排序完毕。假设序列元素总共n+1个,则我们需要找n轮,就可以使该序列排好序。在每轮中,我们可以这样做:用未排序序列的第一个元素和后续的元素依次相比较,如果后续元素小,则后续元素和第一个元素交换位置放到,这样一轮后,排在第一位的一定是最小的。这样进行n轮,就可排序。
原理图
图1:
图2:
初始数据不敏感,不管初始的数据有没有排好序,都需要经历N2/2次比较,这对于一些原本排好序,或者近似排好序的序列来说并不具有优势。在最好的情况下,即所有的排好序,需要0次交换,最差的情况,倒序,需要N-1次交换。
数据交换的次数较少,如果某个元素位于正确的最终位置上,则它不会被移动。在最差情况下也只需要进行N-1次数据交换,在所有的完全依靠交换去移动元素的排序方法中,选择排序属于比较好的一种。
python代码实现:
def sort_choice(numbers, max_to_min=True): """ 我这没有按照标准的选择排序,假设列表长度为n,思路如下: 1、获取最大值x,将x移动到列最后。[n1, n2, n3, ... nn] 2、将x追加到排序结果[n1, n3, ... nn, n2] 3、获取排序后n-1个元素[n1, n3, ... nn],重复第一步,重复n-1次。 max_to_min是指从大到小排序,默认为true;否则从小到大排序。 对[8, 4, 1, 0, 9]排序,大致流程如下: sorted_numbers = [] [8, 4, 1, 0, 9], sorted_numbers = [9] [4, 1, 0, 8], sorted_numbers = [9, 8] [1, 0, 4], sorted_numbers = [9, 8, 4] [0, 1], sorted_numbers = [9, 8, 4, 1] [0], sorted_numbers = [9, 8, 4, 1, 0] """ if len(numbers) <= 1: return numbers sorted_list = [] index = 0 for i in xrange(len(numbers) - index): left_numbers = _get_left_numbers(numbers, max_to_min) numbers = left_numbers[:-1] sorted_list.append(left_numbers[-1]) index += 1 return sorted_list def _get_left_numbers(numbers, get_max=True): ''' 获取最大值或者最小值x,并且将x抽取出来,置于列表最后. Ex: get_max=True, [1, 4, 3] ⇒ [1, 3, 4] get_max=False, [1, 4, 3] ⇒ [4, 3 ,1] ''' max_index = 0 for i, num in enumerate(numbers): if get_max: if num > numbers[max_index]: max_index = i else: if num < numbers[max_index]: max_index = i numbers = numbers[:max_index] + numbers[max_index + 1:] + [numbers[max_index]] return numbers
测试一下:
>>> get_left_numbers([0, 4, 0, 31, 9, 19, 89,67], get_max=True) [0, 4, 0, 31, 9, 19, 67, 89] >>> get_left_numbers([0, 4, 0, 31, 9, 19, 89,67], get_max=False) [4, 0, 31, 9, 19, 89, 67, 0] >>> sort_choice([0, 4, 0, 31, 9, 19, 89,67], max_to_min=False) [0, 0, 4, 9, 19, 31, 67, 89] >>> sort_choice([0, 4, 0, 31, 9, 19, 89,67], max_to_min=True) [89, 67, 31, 19, 9, 4, 0, 0]

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了Python怎么操作XML文件的相关问题,包括了XML基础概述,Python解析XML文件、写入XML文件、更新XML文件等内容,下面一起来看一下,希望对大家有帮助。

通过Python学习选择排序的基本思想与应用选择排序(SelectionSort)是一种简单直观的排序算法,它的基本思想是从待排序的数据中选择最小(或最大)的元素放到已排序区域的末尾,然后再从剩余的未排序数据中选择最小(或最大)的元素放到已排序区域的末尾,以此类推,直到所有数据都排序完成。选择排序的具体步骤如下:首先,从待排序的数据中找到最小(或最大)的元


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

Dreamweaver Mac版
视觉化网页开发工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),