MySQL是关系型数据库中的明星,MongoDB是文档型数据库中的翘楚。
下面通过一个设计实例对比一下二者:假设我们正在维护一个手机产品库,里面除了包含手机的名称,品牌等基本信息,还包含了待机时间,外观设计等参数信息,应该如何存取数据呢?如果使用MySQL的话,应该如何存取数据呢?
如果使用MySQL话,手机的基本信息单独是一个表,另外由于不同手机的参数信息差异很大,所以还需要一个参数表来单独保存。
代码如下:
CREATE TABLE IF NOT EXISTS `mobiles` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`name` VARCHAR(100) NOT NULL,
`brand` VARCHAR(100) NOT NULL,
PRIMARY KEY (`id`)
);
CREATE TABLE IF NOT EXISTS `mobile_params` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`mobile_id` int(10) unsigned NOT NULL,
`name` varchar(100) NOT NULL,
`value` varchar(100) NOT NULL,
PRIMARY KEY (`id`)
);
INSERT INTO `mobiles` (`id`, `name`, `brand`) VALUES
(1, 'ME525', '摩托罗拉'),
(2, 'E7' , '诺基亚');
INSERT INTO `mobile_params` (`id`, `mobile_id`, `name`, `value`) VALUES
(1, 1, '待机时间', '200'),
(2, 1, '外观设计', '直板'),
(3, 2, '待机时间', '500'),
(4, 2, '外观设计', '滑盖');
注:为了演示方便,没有严格遵守关系型数据库的范式设计。
如果想查询待机时间大于100小时,并且外观设计是直板的手机,需要按照如下方式查询:
SELECT * FROM `mobile_params` WHERE name = '待机时间' AND value > 100;
SELECT * FROM `mobile_params` WHERE name = '外观设计' AND value = '直板';
注:参数表为了方便,把数值和字符串统一保存成字符串,实际使用时,MySQL允许在字符串类型的字段上进行数值类型的查询,只是需要进行类型转换,多少会影响一点性能。
两条SQL的结果取交集得到想要的MOBILE_ID,再到mobiles表查询即可:
SELECT * FROM `mobiles` WHERE mobile_id IN (MOBILE_ID)
如果使用MongoDB的话,应该如何存取数据呢?
如果使用MongoDB的话,虽然理论上可以采用和MySQL一样的设计方案,但那样的话就显得无趣了,没有发挥出MongoDB作为文档型数据库的优点,实际上使用MongoDB的话,和MySQL相比,形象一点来说,可以合二为一:
代码如下:
db.getCollection("mobiles").ensureIndex({
"params.name": 1,
"params.value": 1
});
db.getCollection("mobiles").insert({
"_id": 1,
"name": "ME525",
"brand": "摩托罗拉",
"params": [
{"name": "待机时间", "value": 200},
{"name": "外观设计", "value": "直板"}
]
});
db.getCollection("mobiles").insert({
"_id": 2,
"name": "E7",
"brand": "诺基亚",
"params": [
{"name": "待机时间", "value": 500},
{"name": "外观设计", "value": "滑盖"}
]
});
如果想查询待机时间大于100小时,并且外观设计是直板的手机,需要按照如下方式查询:
代码如下:
db.getCollection("mobiles").find({
"params": {
$all: [
{$elemMatch: {"name": "待机时间", "value": {$gt: 100}}},
{$elemMatch: {"name": "外观设计", "value": "直板"}}
]
}
});
注:查询中用到的,等高级用法的详细介绍请参考官方文档中相关说明。
MySQL需要多个表,多次查询才能搞定的问题,MongoDB只需要一个表,一次查询就能搞定,对比完成,相对MySQL而言,MongoDB显得更胜一筹,至少本例如此。

存储过程是MySQL中的预编译SQL语句集合,用于提高性能和简化复杂操作。1.提高性能:首次编译后,后续调用无需重新编译。2.提高安全性:通过权限控制限制数据表访问。3.简化复杂操作:将多条SQL语句组合,简化应用层逻辑。

MySQL查询缓存的工作原理是通过存储SELECT查询的结果,当相同查询再次执行时,直接返回缓存结果。1)查询缓存提高数据库读取性能,通过哈希值查找缓存结果。2)配置简单,在MySQL配置文件中设置query_cache_type和query_cache_size。3)使用SQL_NO_CACHE关键字可以禁用特定查询的缓存。4)在高频更新环境中,查询缓存可能导致性能瓶颈,需通过监控和调整参数优化使用。

MySQL被广泛应用于各种项目中的原因包括:1.高性能与可扩展性,支持多种存储引擎;2.易于使用和维护,配置简单且工具丰富;3.丰富的生态系统,吸引大量社区和第三方工具支持;4.跨平台支持,适用于多种操作系统。

MySQL数据库升级的步骤包括:1.备份数据库,2.停止当前MySQL服务,3.安装新版本MySQL,4.启动新版本MySQL服务,5.恢复数据库。升级过程需注意兼容性问题,并可使用高级工具如PerconaToolkit进行测试和优化。

MySQL备份策略包括逻辑备份、物理备份、增量备份、基于复制的备份和云备份。1.逻辑备份使用mysqldump导出数据库结构和数据,适合小型数据库和版本迁移。2.物理备份通过复制数据文件,速度快且全面,但需数据库一致性。3.增量备份利用二进制日志记录变化,适用于大型数据库。4.基于复制的备份通过从服务器备份,减少对生产系统的影响。5.云备份如AmazonRDS提供自动化解决方案,但成本和控制需考虑。选择策略时应考虑数据库大小、停机容忍度、恢复时间和恢复点目标。

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

在MySQL中优化数据库模式设计可通过以下步骤提升性能:1.索引优化:在常用查询列上创建索引,平衡查询和插入更新的开销。2.表结构优化:通过规范化或反规范化减少数据冗余,提高访问效率。3.数据类型选择:使用合适的数据类型,如INT替代VARCHAR,减少存储空间。4.分区和分表:对于大数据量,使用分区和分表分散数据,提升查询和维护效率。

tooptimizemysqlperformance,lofterTheSeSteps:1)inasemproperIndexingTospeedUpqueries,2)使用ExplaintplaintoAnalyzeandoptimizequeryPerformance,3)ActiveServerConfigurationStersLikeTlikeTlikeTlikeIkeLikeIkeIkeLikeIkeLikeIkeLikeIkeLikeNodb_buffer_pool_sizizeandmax_connections,4)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

禅工作室 13.0.1
功能强大的PHP集成开发环境

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。