本文将模拟一个数据仓库系统,其中有用户数据,产品数据以及订单数据。根据这些数据结构建立多维数据集,并且以增量更新的方式对其进行处理。之所以强调增量的方
本文将模拟一个数据仓库系统,其中有用户数据,产品数据以及订单数据。根据这些数据结构建立多维数据集,并且以增量更新的方式对其进行处理。
之所以强调增量的方式,是考虑到事实表中数据的增长,假设以后增长到几十亿,全量处理就变得很不现实,所以方案中着重演示以增量方式处理多维数据集的方案。
增量处理多维数据集的关键是要将事实数据分为两部分处理,一个是增量事实表,一个是历史事实表,多维数据集第一次处理历史事实表中的数据,以后每次周期性的处理都是处理增量表中的数据。
本文中提及的SQLServer和Visual Studio都是2008版本,2005版本同样也适用。
数据假设:一张用户表,一张产品表,一张订单表,订单里记录的是谁买了什么。多维数据集统计的需求就是根据订单统计谁买过什么。
首先,建立数据仓库,在数据引擎下新建BIDemo库。
接下来建立用户表,结构如下:
此外还有产品表:
以及历史订单表和建立增量订单表,它们的结构是一样的:
为了测试方便,香港空间,我们在用户表中加入一些测试数据:
然后在产品表中加入一些测试数据
至于事实表,手动加入测试数据就不现实了,所以这里写了一个程序利用随机数来灌测试数据:
这个程序的代码可以在本文中找到。生成后的数据基本如下所示:
到此,测试的数据结构以及数据就已经准备好了,相当于有了一个小型的数据仓库。
接下来在Visual Studio中建立BI解决方案,方案下分为一个SSIS项目和一个SSAS项目。
在SSAS项目下建立数据源和数据源视图,这里需要注意的是,事实表用历史表,而不是增量表,尽管其还没有数据。
首先建立数据源,连接刚才建立的数据库,并且在数据源视图里定义好关系,虚拟主机,如下图:
然后,根据此数据源视图建立多维数据集,需要注意的是,度量选择历史表,维度选择用户和产品两个表。
最后,部署多维数据集。这里只部署就可以了,不需要处理,处理任务将在以后的SSIS包中处理。
下面来看SSIS项目。在SSIS包里建立四个任务模块,类型分别如下:
前两个多维数据集处理模块是用来处理多维数据集的,数据流负责把增量事实表的数据导到历史事实表中,最后执行一个SQL任务把增量表中的数据删除。
两个多维数据集模块,前一个是专门处理维度,第二个是处理cube。这里之所以要把多维数据集维度处理单独拿出来放在前面,是因为在笔者经验中,对多维数据集的处理虽然是全部处理,但是新增维度的数据不会被聚合到其中,所以需要单独拿出来放在前面处理。
(题外话:对于这个地方笔者一直也不是很理解,按理说既然是全部处理那么怎么连维度都不处理呢,还需要单拿出来)
以下是设置维度处理模块,在界面中选择维度即可。
然后是cube处理模块,如下图。
然后指定增量更新,并且配置增量更新的数据表,这里指定增量表。
多维数据集处理完成之后就可以把增量表的数据放到历史表中了,以保证第二天加入的数据都是增量数据。
需要注意的是,在实际的运行当中,一定要保证BI的处理过程时业务系统没有发生数据,否则就会造成数据遗漏而导致不平。所以,BI的处理一般都是在凌晨。
然后是第三步的数据流模块,此部分的主要任务是将增量表的数据转移到历史表中。
最后的一个SQL任务是一个Delete或者Truncate table任务,把增量表里的数据清空。
最终的任务流程如下图:
执行包,全部成功之后应该如下图所示:
执行成功后,打开历史表,可以发现数据已经在里面了,而且增量表中的数据已经不存在了。
查询多维数据集,可以看到新的数据被聚合到其中。
通过以上透视表可以清晰的看到谁买了什么样的产品。
再次运行Rubbish往增量表里灌几条数据,然后重新运行此SSIS包,可以发现新增的数据已经被聚合到多维数据集中了,注意处理的方式是增量的。
本文提及的数据结构模型都很简单,主要介绍的是多维数据集处理的流程以及方法,重点阐述增量部分的方案,以及需要注意的问题。希望有知道更好方法的兄弟一起交流探讨。
本文提及的相关数据库,项目文件以及程序下载
FAQ:
1.增量数据是怎么来的?
笔者个人认为这个需要跟业务系统配合来做,比如加入触发器等。或者通过时间戳,到业务系统中能提取到。
2.如果有更新和删除怎么办?

MySQL是一种开源的关系型数据库管理系统,主要用于快速、可靠地存储和检索数据。其工作原理包括客户端请求、查询解析、执行查询和返回结果。使用示例包括创建表、插入和查询数据,以及高级功能如JOIN操作。常见错误涉及SQL语法、数据类型和权限问题,优化建议包括使用索引、优化查询和分表分区。

MySQL是一个开源的关系型数据库管理系统,适用于数据存储、管理、查询和安全。1.它支持多种操作系统,广泛应用于Web应用等领域。2.通过客户端-服务器架构和不同存储引擎,MySQL高效处理数据。3.基本用法包括创建数据库和表,插入、查询和更新数据。4.高级用法涉及复杂查询和存储过程。5.常见错误可通过EXPLAIN语句调试。6.性能优化包括合理使用索引和优化查询语句。

选择MySQL的原因是其性能、可靠性、易用性和社区支持。1.MySQL提供高效的数据存储和检索功能,支持多种数据类型和高级查询操作。2.采用客户端-服务器架构和多种存储引擎,支持事务和查询优化。3.易于使用,支持多种操作系统和编程语言。4.拥有强大的社区支持,提供丰富的资源和解决方案。

InnoDB的锁机制包括共享锁、排他锁、意向锁、记录锁、间隙锁和下一个键锁。1.共享锁允许事务读取数据而不阻止其他事务读取。2.排他锁阻止其他事务读取和修改数据。3.意向锁优化锁效率。4.记录锁锁定索引记录。5.间隙锁锁定索引记录间隙。6.下一个键锁是记录锁和间隙锁的组合,确保数据一致性。

MySQL查询性能不佳的原因主要包括没有使用索引、查询优化器选择错误的执行计划、表设计不合理、数据量过大和锁竞争。 1.没有索引导致查询缓慢,添加索引后可显着提升性能。 2.使用EXPLAIN命令可以分析查询计划,找出优化器错误。 3.重构表结构和优化JOIN条件可改善表设计问题。 4.数据量大时,采用分区和分表策略。 5.高并发环境下,优化事务和锁策略可减少锁竞争。

在数据库优化中,应根据查询需求选择索引策略:1.当查询涉及多个列且条件顺序固定时,使用复合索引;2.当查询涉及多个列但条件顺序不固定时,使用多个单列索引。复合索引适用于优化多列查询,单列索引则适合单列查询。

要优化MySQL慢查询,需使用slowquerylog和performance_schema:1.启用slowquerylog并设置阈值,记录慢查询;2.利用performance_schema分析查询执行细节,找出性能瓶颈并优化。

MySQL和SQL是开发者必备技能。1.MySQL是开源的关系型数据库管理系统,SQL是用于管理和操作数据库的标准语言。2.MySQL通过高效的数据存储和检索功能支持多种存储引擎,SQL通过简单语句完成复杂数据操作。3.使用示例包括基本查询和高级查询,如按条件过滤和排序。4.常见错误包括语法错误和性能问题,可通过检查SQL语句和使用EXPLAIN命令优化。5.性能优化技巧包括使用索引、避免全表扫描、优化JOIN操作和提升代码可读性。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

Atom编辑器mac版下载
最流行的的开源编辑器

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),