Hive的MAP数或者说MAPREDUCE的MAP数是由谁来决定的呢?inputsplit size,那么对于每一个inputsplit size是如何计算出来的,这是做
Hive的MAP数或者说MAPREDUCE的MAP数是由谁来决定的呢?inputsplit size,那么对于每一个inputsplit size是如何计算出来的,这是做MAP数调整的关键.
Hadoop给出了Inputformat接口用于描述输入数据的格式,,其中一个关键的方法就是getSplits,对输入的数据进行分片.
Hive对InputFormat进行了封装:
而具体采用的实现是由参数hive.input.format来决定的,主要使用2中类型HiveInputFormat和CombineHiveInputFormat.
对于HiveInputFormat来说:
public InputSplit[] getSplits(JobConf job, int numSplits) throws IOException {
//扫描每一个分区
for (Path dir : dirs) {
PartitionDesc part = getPartitionDescFromPath(pathToPartitionInfo, dir);
//获取分区的输入格式
Class inputFormatClass = part.getInputFileFormatClass();
InputFormat inputFormat = getInputFormatFromCache(inputFormatClass, job);
//按照相应格式的分片算法获取分片
//注意:这里的Inputformat只是old version API:org.apache.hadoop.mapred而不是org.apache.hadoop.mapreduce,因此不能采用新的API,否则在查询时会报异常:Input format must implement InputFormat.区别就是新的API的计算inputsplit size(Math.max(minSize, Math.min(maxSize, blockSize))和老的(Math.max(minSize, Math.min(goalSize, blockSize)))不一样;
InputSplit[] iss = inputFormat.getSplits(newjob, numSplits / dirs.length);
for (InputSplit is : iss) {
//封装结果,返回
result.add(new HiveInputSplit(is, inputFormatClass.getName()));
}
}
return result.toArray(new HiveInputSplit[result.size()]);
}
对于CombineHiveInputFormat来说的计算就比较复杂了:
public InputSplit[] getSplits(JobConf job, int numSplits) throws IOException {
//加载CombineFileInputFormatShim,这个类继承了org.apache.hadoop.mapred.lib.CombineFileInputFormat
CombineFileInputFormatShim combine = ShimLoader.getHadoopShims()
.getCombineFileInputFormat();
if (combine == null) {
//若为空则采用HiveInputFormat的方式,下同
return super.getSplits(job, numSplits);
}
Path[] paths = combine.getInputPathsShim(job);
for (Path path : paths) {
//若是外部表,则按照HiveInputFormat方式分片
if ((tableDesc != null) && tableDesc.isNonNative()) {
return super.getSplits(job, numSplits);
}
Class inputFormatClass = part.getInputFileFormatClass();
String inputFormatClassName = inputFormatClass.getName();
InputFormat inputFormat = getInputFormatFromCache(inputFormatClass, job);
if (this.mrwork != null && !this.mrwork.getHadoopSupportsSplittable()) {
if (inputFormat instanceof TextInputFormat) {
if ((new CompressionCodecFactory(job)).getCodec(path) != null)
//在未开启hive.hadoop.supports.splittable.combineinputformat(MAPREDUCE-1597)参数情况下,对于TextInputFormat并且为压缩则采用HiveInputFormat分片算法
return super.getSplits(job, numSplits);
}
}
//对于连接式同上
if (inputFormat instanceof SymlinkTextInputFormat) {
return super.getSplits(job, numSplits);
}
CombineFilter f = null;
boolean done = false;
Path filterPath = path;
//由参数hive.mapper.cannot.span.multiple.partitions控制,默认false;如果没true,则对每一个partition创建一个pool,以下省略为true的处理;对于同一个表的同一个文件格式的split创建一个pool为combine做准备;
if (!mrwork.isMapperCannotSpanPartns()) {
opList = HiveFileFormatUtils.doGetWorksFromPath(
pathToAliases, aliasToWork, filterPath);
f = poolMap.get(new CombinePathInputFormat(opList, inputFormatClassName));
}
if (!done) {
if (f == null) {
f = new CombineFilter(filterPath);
combine.createPool(job, f);
} else {
f.addPath(filterPath);
}
}
}
if (!mrwork.isMapperCannotSpanPartns()) {
//到这里才调用combine的分片算法,继承了org.apache.hadoop.mapred.lib.CombineFileInputFormat extends 新版本CombineFileInputformat
iss = Arrays.asList(combine.getSplits(job, 1));
}
//对于sample查询特殊处理
if (mrwork.getNameToSplitSample() != null && !mrwork.getNameToSplitSample().isEmpty()) {
iss = sampleSplits(iss);
}
//封装结果返回
for (InputSplitShim is : iss) {
CombineHiveInputSplit csplit = new CombineHiveInputSplit(job, is);
result.add(csplit);
}
return result.toArray(new CombineHiveInputSplit[result.size()]);
}
更多详情见请继续阅读下一页的精彩内容:
Hive 的详细介绍:请点这里
Hive 的下载地址:请点这里
相关阅读:
基于Hadoop集群的Hive安装
Hive内表和外表的区别
Hadoop + Hive + Map +reduce 集群安装部署
Hive本地独立模式安装
Hive学习之WordCount单词统计

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于索引优化器工作原理的相关内容,其中包括了MySQL Server的组成,MySQL优化器选择索引额原理以及SQL成本分析,最后通过 select 查询总结整个查询过程,下面一起来看一下,希望对大家有帮助。

sybase是基于客户/服务器体系结构的数据库,是一个开放的、高性能的、可编程的数据库,可使用事件驱动的触发器、多线索化等来提高性能。

visual foxpro数据库文件是管理数据库对象的系统文件。在VFP中,用户数据是存放在“.DBF”表文件中;VFP的数据库文件(“.DBC”)中不存放用户数据,它只起将属于某一数据库的 数据库表与视图、连接、存储过程等关联起来的作用。

数据库系统由4个部分构成:1、数据库,是指长期存储在计算机内的,有组织,可共享的数据的集合;2、硬件,是指构成计算机系统的各种物理设备,包括存储所需的外部设备;3、软件,包括操作系统、数据库管理系统及应用程序;4、人员,包括系统分析员和数据库设计人员、应用程序员(负责编写使用数据库的应用程序)、最终用户(利用接口或查询语言访问数据库)、数据库管理员(负责数据库的总体信息控制)。

microsoft sql server是Microsoft公司推出的关系型数据库管理系统,是一个全面的数据库平台,使用集成的商业智能(BI)工具提供了企业级的数据管理,具有使用方便可伸缩性好与相关软件集成程度高等优点。SQL Server数据库引擎为关系型数据和结构化数据提供了更安全可靠的存储功能,使用户可以构建和管理用于业务的高可用和高性能的数据应用程序。

结构层次是“数据库→数据表→记录→字段”;字段构成记录,记录构成数据表,数据表构成了数据库。数据库是一个完整的数据的记录的整体,一个数据库包含0到N个表,一个表包含0到N个字段,记录是表中的行。

go语言可以写数据库。Go语言和其他语言不同的地方是,Go官方没有提供数据库驱动,而是编写了开发数据库驱动的标准接口,开发者可以根据定义的接口来开发相应的数据库驱动;这样做的好处在于,只要是按照标准接口开发的代码,以后迁移数据库时,不需要做任何修改,极大方便了后期的架构调整。

mysql查询为什么会慢,关于这个问题,在实际开发经常会遇到,而面试中,也是个高频题。遇到这种问题,我们一般也会想到是因为索引。那除开索引之外,还有哪些因素会导致数据库查询变慢呢?


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

Atom编辑器mac版下载
最流行的的开源编辑器

Dreamweaver CS6
视觉化网页开发工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器