有这么个需求:一个目录下的数据只能由一个map来处理。如果多个map处理了同一个目录下的数据会导致数据错乱。 刚开始google了下,以为网上都有现成的InputFormat,找到的答案类似我之前写的 mapreduce job让一个文件只由一个map来处理。 或者是把目录写在文
有这么个需求:一个目录下的数据只能由一个map来处理。如果多个map处理了同一个目录下的数据会导致数据错乱。
刚开始google了下,以为网上都有现成的InputFormat,找到的答案类似我之前写的 “mapreduce job让一个文件只由一个map来处理“。
或者是把目录写在文件里面,作为输入:
/path/to/directory1
/path/to/directory2
/path/to/directory3
代码里面按行读取:
@Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { FileSystem fs = FileSystem.get(context.getConfiguration()); for (FileStatus status : fs.listStatus(new Path(value.toString()))) { // process file } }
都不能满足需求,还是自己实现一个 OneMapOneDirectoryInputFormat 吧,也很简单:
import java.io.IOException; import java.util.*; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.Path; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.JobContext; import org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat; import org.apache.hadoop.mapreduce.lib.input.CombineFileSplit; /** * 一个map处理一个目录的数据 */ public abstract class OneMapOneDirectoryInputFormat extends CombineFileInputFormat { private static final Log LOG = LogFactory.getLog(OneMapOneDirectoryInputFormat.class); @Override protected boolean isSplitable(JobContext context, Path file) { return false; } @Override public List getSplits(JobContext job) throws IOException { // get all the files in input path List stats = listStatus(job); List splits = new ArrayList(); if (stats.size() == 0) { return splits; } LOG.info("fileNums=" + stats.size()); Map> map = new HashMap>(); for (FileStatus stat : stats) { String directory = stat.getPath().getParent().toString(); if (map.containsKey(directory)) { map.get(directory).add(stat); } else { List fileList = new ArrayList(); fileList.add(stat); map.put(directory, fileList); } } // 设置inputSplit long currentLen = 0; List pathLst = new ArrayList(); List offsetLst = new ArrayList(); List lengthLst = new ArrayList(); Iterator itr = map.keySet().iterator(); while (itr.hasNext()) { String dir = itr.next(); List fileList = map.get(dir); for (int i = 0; i path[" + i + "]=" + pathArray[i].toString()); } splits.add(thissplit); pathLst.clear(); offsetLst.clear(); lengthLst.clear(); currentLen = 0; } return splits; } private long[] getLongArray(List lst) { long[] rst = new long[lst.size()]; for (int i = 0; i <p>这个InputFormat的具体使用方法就不说了。其实与“一个Hadoop程序的优化过程 – 根据文件实际大小实现CombineFileInputFormat”中的MultiFileInputFormat比较类似。</p> <p class="copyright"> 原文地址:Hadoop : 一个目录下的数据只由一个map处理, 感谢原作者分享。 </p>

mysql'sblobissuitableForStoringBinaryDataWithInareLationalDatabase,而alenosqloptionslikemongodb,redis和calablesolutionsoluntionsoluntionsoluntionsolundortionsolunsolunsstructureddata.blobobobsimplobissimplobisslowderperformandperformanceperformancewithlararengelitiate;

toaddauserinmysql,使用:createUser'username'@'host'Indessify'password'; there'showtodoitsecurely:1)choosethehostcarecarefullytocon trolaccess.2)setResourcelimitswithoptionslikemax_queries_per_hour.3)usestrong,iniquepasswords.4)Enforcessl/tlsconnectionswith

toAvoidCommonMistakeswithStringDatatatPesInMysQl,CloseStringTypenuances,chosethirtightType,andManageEngencodingAndCollationsEttingsefectery.1)usecharforfixed lengengters lengengtings,varchar forbariaible lengength,varchariable length,andtext/blobforlabforlargerdata.2 seterters seterters seterters seterters

mysqloffersechar,varchar,text,and denumforstringdata.usecharforfixed Lengttrings,varcharerforvariable长度,文本forlarger文本,andenumforenforcingDataAntegrityWithaEtofValues。

优化MySQLBLOB请求可以通过以下策略:1.减少BLOB查询频率,使用独立请求或延迟加载;2.选择合适的BLOB类型(如TINYBLOB);3.将BLOB数据分离到单独表中;4.在应用层压缩BLOB数据;5.对BLOB元数据建立索引。这些方法结合实际应用中的监控、缓存和数据分片,可以有效提升性能。

掌握添加MySQL用户的方法对于数据库管理员和开发者至关重要,因为它确保数据库的安全性和访问控制。1)使用CREATEUSER命令创建新用户,2)通过GRANT命令分配权限,3)使用FLUSHPRIVILEGES确保权限生效,4)定期审计和清理用户账户以维护性能和安全。

chosecharforfixed-lengthdata,varcharforvariable-lengthdata,andtextforlargetextfield.1)chariseffity forconsistent-lengthdatalikecodes.2)varcharsuitsvariable-lengthdatalikenames,ballancingflexibilitibility andperformance.3)

在MySQL中处理字符串数据类型和索引的最佳实践包括:1)选择合适的字符串类型,如CHAR用于固定长度,VARCHAR用于可变长度,TEXT用于大文本;2)谨慎索引,避免过度索引,针对常用查询创建索引;3)使用前缀索引和全文索引优化长字符串搜索;4)定期监控和优化索引,保持索引小巧高效。通过这些方法,可以在读取和写入性能之间取得平衡,提升数据库效率。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

Dreamweaver CS6
视觉化网页开发工具

Atom编辑器mac版下载
最流行的的开源编辑器