MySQL Cluster使用到目前为止遇到渴望得到答案的问题,也是直接影响使用的问题就是MySQL Cluster的写入效率问题和Cluster是否适合大数据存储、如何配置存储的问题。 在之前的测试中MySQL Cluster的写入效率一直不佳,这也是直接影响能否使用MySQL Cluster的
MySQL Cluster使用到目前为止遇到渴望得到答案的问题,也是直接影响使用的问题就是MySQL Cluster的写入效率问题和Cluster是否适合大数据存储、如何配置存储的问题。
在之前的测试中MySQL Cluster的写入效率一直不佳,这也是直接影响能否使用MySQL Cluster的关键。现在我们来仔细测试一下。使用的环境略有变化。
Data节点的内存扩展为4G。
集群配置如下:
[ndbd default] # Options affecting ndbd processes on all data nodes: NoOfReplicas=2 # Number of replicas DataMemory=2000M # How much memory to allocate for data storage IndexMemory=300M # How much memory to allocate for index storage # For DataMemory and IndexMemory, we have used the # default values. Since the "world" database takes up # only about 500KB, this should be more than enough for # this example Cluster setup. MaxNoOfConcurrentOperations=1200000 MaxNoOfLocalOperations=1320000
测试代码如下:
/** * 向数据库中插入数据 * * @param conn * @param totalRowCount * @param perRowCount * @param tableName * @author lihzh(OneCoder) * @throws SQLException * @date 2013 -1 -17 下午1:57:10 */ private void insertDataToTable(Connection conn, String tableName, long totalRowCount, long perRowCount, long startIndex) throws SQLException { conn.setAutoCommit( false); String sql = "insert into " + tableName + " VALUES(?,?,?)"; System. out.println( "Begin to prepare statement."); PreparedStatement statement = conn.prepareStatement(sql); long sum = 0L; for ( int j = 0; j <p> 分下列情景进行写入测试。</p> <p> 数据加载、写入在内存中时,在独立的新库、新表中一次写入100,1000,10000,50000条记录,分别记录其耗时情况。(5次平均)</p> <pre class="brush:php;toolbar:false"> 100:260ms 1000:1940ms 10000:17683ms(12000-17000) 50000: 93308、94730、90162、94849、162848
与普通单点MySQL写入效率进行对比(2G内存)
100:182ms 1000:1624ms 10000:14946ms 50000:84438ms
双线程并发写入测试
由于只有两个SQL节点,所以这里只采用双线程写入的方法进行测试。代码上采用了简单的硬编码
/** * 多线程并行写入测试 * * @author lihzh(OneCoder) * @blog http://www.coderli.com * @date 2013 -2 -27 下午3:39:56 */ private void parallelInsert() { final long start = System. currentTimeMillis(); Thread t1 = new Thread( new Runnable() { @Override public void run() { try { Connection conn = getConnection(DB_IPADDRESS, DB_PORT, DB_NAME, DB_USER, DB_PASSOWRD); MySQLClusterDataMachine dataMachine = new MySQLClusterDataMachine(); dataMachine.insertDataToTable(conn, TABLE_NAME_DATAHOUSE, 500, 100, 0); long end1 = System.currentTimeMillis(); System. out.println( "Thread 1 cost: " + (end1 - start)); } catch (SQLException e) { e.printStackTrace(); } } }); Thread t2 = new Thread( new Runnable() { @Override public void run() { try { Connection conn = getConnection(DB_IPADDRESS_TWO, DB_PORT, DB_NAME, DB_USER, DB_PASSOWRD); MySQLClusterDataMachine dataMachine = new MySQLClusterDataMachine(); dataMachine.insertDataToTable(conn, TABLE_NAME_DATAHOUSE, 500, 100, 500); long end2 = System.currentTimeMillis(); System. out.println( "Thread 2 cost: " + (end2 - start)); } catch (SQLException e) { e.printStackTrace(); } } }); t1.start(); t2.start(); }
测试结果:
(总条数/每次) | 线程1(总/平均- 各写一半数据) | 线程2 | 并行总耗时 | 单线程单点 |
1000/100 | 985/197 | 1005/201 | 1005/201 | 2264/226 |
10000/1000 | 9223/1836 | 9297/1850 | 9297/1850 | 19405/1940 |
100000/10000 | 121425/12136 | 122081/12201 | 121425/12136 |
148518/14851 |
从结果可以看出,在10000条以下批量写入的情况下,SQL节点的处理能力是集群的瓶颈,双线程双SQL写入相较单线程单节点效率可提升一倍。但是当批量写入数据达到一定数量级,这种效率的提升就不那么明显了,应该是集群中的其他位置也产生了瓶颈。
注:由于各自测试环境的差异,测试数据仅可做内部比较,不可外部横向对比。仅供参考。
写入测试,要做的还很多,不过暂时告一段落。大数据存储和查询测试,随后进行。
原文地址:MySQL Cluster写入效率测试, 感谢原作者分享。

MySQL使用的是GPL许可证。1)GPL许可证允许自由使用、修改和分发MySQL,但修改后的分发需遵循GPL。2)商业许可证可避免公开修改,适合需要保密的商业应用。

选择InnoDB而不是MyISAM的情况包括:1)需要事务支持,2)高并发环境,3)需要高数据一致性;反之,选择MyISAM的情况包括:1)主要是读操作,2)不需要事务支持。InnoDB适合需要高数据一致性和事务处理的应用,如电商平台,而MyISAM适合读密集型且无需事务的应用,如博客系统。

在MySQL中,外键的作用是建立表与表之间的关系,确保数据的一致性和完整性。外键通过引用完整性检查和级联操作维护数据的有效性,使用时需注意性能优化和避免常见错误。

MySQL中有四种主要的索引类型:B-Tree索引、哈希索引、全文索引和空间索引。1.B-Tree索引适用于范围查询、排序和分组,适合在employees表的name列上创建。2.哈希索引适用于等值查询,适合在MEMORY存储引擎的hash_table表的id列上创建。3.全文索引用于文本搜索,适合在articles表的content列上创建。4.空间索引用于地理空间查询,适合在locations表的geom列上创建。

toCreateAnIndexinMysql,usethecReateIndexStatement.1)forasingLecolumn,使用“ createIndexIdx_lastNameEnemployees(lastName); 2)foracompositeIndex,使用“ createIndexIndexIndexIndexIndexDx_nameOmplayees(lastName,firstName,firstName);” 3)forauniqe instex,creationexexexexex,

MySQL和SQLite的主要区别在于设计理念和使用场景:1.MySQL适用于大型应用和企业级解决方案,支持高性能和高并发;2.SQLite适合移动应用和桌面软件,轻量级且易于嵌入。

MySQL中的索引是数据库表中一列或多列的有序结构,用于加速数据检索。1)索引通过减少扫描数据量提升查询速度。2)B-Tree索引利用平衡树结构,适合范围查询和排序。3)创建索引使用CREATEINDEX语句,如CREATEINDEXidx_customer_idONorders(customer_id)。4)复合索引可优化多列查询,如CREATEINDEXidx_customer_orderONorders(customer_id,order_date)。5)使用EXPLAIN分析查询计划,避

在MySQL中使用事务可以确保数据一致性。1)通过STARTTRANSACTION开始事务,执行SQL操作后用COMMIT提交或ROLLBACK回滚。2)使用SAVEPOINT可以设置保存点,允许部分回滚。3)性能优化建议包括缩短事务时间、避免大规模查询和合理使用隔离级别。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Atom编辑器mac版下载
最流行的的开源编辑器

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

禅工作室 13.0.1
功能强大的PHP集成开发环境